Wind turbine blade damage detection using data-driven techniques

Authors

  • D. Velasco Mechatronics Engineering Faculty of Mechanical Engineering and Production Science, FIMCP Escuela Superior Polit´ecnica del Litoral, ESPOL Campus Gustavo Galindo Km. 30.5 V´ıa Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador Phone number: +593 9 9103 5259 Author
  • L. Guzm´an Mechatronics Engineering Faculty of Mechanical Engineering and Production Science, FIMCP Escuela Superior Polit´ecnica del Litoral, ESPOL Campus Gustavo Galindo Km. 30.5 V´ıa Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador Phone number: +593 9 9103 5259 Author
  • B. Puruncajas Control, Data, and Artificial Intelligence, CoDAlab Department of Mathematics, Escola d’Enginyeria de Barcelona Est, EEBE Universitat Polit`ecnica de Catalunya, UPC Campus Diagonal-Bes´os (CDB) 08019, Barcelona, Spain Author
  • C. Tutiv´en Universidad ECOTEC, Km. 13.5 Samborond´on, Samborond´on, EC092303, Ecuador Phone number: +593 04 3723400 3 Control, Data, and Artificial Intelligence, CoDAlab Department of Mathematics, Escola d’Enginyeria de Barcelona Est, EEBE Universitat Polit`ecnica de Catalunya, UPC Campus Diagonal-Bes´os (CDB) 08019, Barcelona, Spain Author
  • Y. Vidal Institut de Matem ` atiques de la UPC - BarcelonaTech, IMTech Pau Gargallo 14, 08028 Barcelona, Spain Phone number: +34 934 137 309. Author

DOI:

https://doi.org/10.24084/repqj21.357

Keywords:

Wind turbine, damage detection, blade, vibration, RMSE

Abstract

This work presents a simple damage detection strategy for wind turbine blades. In particular, a vibration analysis-based damage detection methodology is proposed that requires only healthy data and detects damage in different locations of the blade. The stated structural health monitoring strategy is based on the extraction of characteristics using statistical metrics as a technique for the recognition and differentiation of healthy test experiments from damaged test experiments with simulated faults created by added mass. In this manner, several metrics are approached to find those that show better classification in processing the data provided by the sensors. Finally, an evaluation process is performed to detect blade damage. The results show that the proposed RMSE metric performs at an ideal level, making it a promising strategy for the detection of blade damage.

Author Biographies

  • B. Puruncajas, Control, Data, and Artificial Intelligence, CoDAlab Department of Mathematics, Escola d’Enginyeria de Barcelona Est, EEBE Universitat Polit`ecnica de Catalunya, UPC Campus Diagonal-Bes´os (CDB) 08019, Barcelona, Spain

    Mechatronics Engineering

    Faculty of Mechanical Engineering and Production Science, FIMCP

    Escuela Superior Polit

    ´

    ecnica del Litoral, ESPOL

    Campus Gustavo Galindo Km. 30.5 V

    ´

    ıa Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador

    Phone number: +593 9 9103 5259 

  • C. Tutiv´en, Universidad ECOTEC, Km. 13.5 Samborond´on, Samborond´on, EC092303, Ecuador Phone number: +593 04 3723400 3 Control, Data, and Artificial Intelligence, CoDAlab Department of Mathematics, Escola d’Enginyeria de Barcelona Est, EEBE Universitat Polit`ecnica de Catalunya, UPC Campus Diagonal-Bes´os (CDB) 08019, Barcelona, Spain

    Mechatronics Engineering

    Faculty of Mechanical Engineering and Production Science, FIMCP

    Escuela Superior Polit

    ´

    ecnica del Litoral, ESPOL

    Campus Gustavo Galindo Km. 30.5 V

    ´

    ıa Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador

    Phone number: +593 9 9103 5259, 

  • Y. Vidal, Institut de Matem ` atiques de la UPC - BarcelonaTech, IMTech Pau Gargallo 14, 08028 Barcelona, Spain Phone number: +34 934 137 309.

    Control, Data, and Artificial Intelligence, CoDAlab

    Department of Mathematics, Escola d’Enginyeria de Barcelona Est, EEBE

    Universitat Polit

    `

    ecnica de Catalunya, UPC

    Campus Diagonal-Bes

    ´

    os (CDB) 08019, Barcelona, Spain.

Published

2024-01-08

Issue

Section

Articles