Impact of Smart Grid Technology on Power Distribution Efficiency

Authors

  • Dong Lv Suzhou Power Supply Company State Grid Jiangsu Electric Power Co., Ltd., Suzhou, 215000, Jiangsu, China Author
  • Yuanqing Pan Suzhou Power Supply Company State Grid Jiangsu Electric Power Co., Ltd., Suzhou, 215000, Jiangsu, China Author
  • Yijie Xia Suzhou Power Supply Company State Grid Jiangsu Electric Power Co., Ltd., Suzhou, 215000, Jiangsu, China Author
  • Xiaolin Liu Suzhou Power Supply Company State Grid Jiangsu Electric Power Co., Ltd., Suzhou, 215000, Jiangsu, China Author
  • Lingjie Wu Suzhou Power Supply Company State Grid Jiangsu Electric Power Co., Ltd., Suzhou, 215000, Jiangsu, China Author

DOI:

https://doi.org/10.52152/4171

Keywords:

Distribution Efficiency, Particle Swarm Optimization, Smart Grid, Support Vector Regression, Load Prediction

Abstract

Traditional smart grids lack real-time data analysis capabilities when processing large-scale data, resulting in insufficient timeliness of power dispatching and fault response. Low load forecasting accuracy affects the accuracy of distribution dispatching and reduces distribution efficiency. This paper proposed a solution that combined PSO (Particle Swarm Optimization) and SVR (Support Vector Regression). PSO optimizes power resource dispatching and minimizes energy consumption under constraints by adjusting the operating status of equipment. SVR predicts future loads through regression analysis of historical load data to provide accurate support for distribution planning. The paper applied the PSO to hyperparameter and penalty factors to improve prediction accuracy. According to the PSO optimization and SVR prediction results, the power grid dispatching plan is adjusted in real time, and the power flow and equipment load are dynamically adjusted to ensure the smooth operation of the system under different loads and improve dispatching efficiency. The experimental results show that the average MSE (Mean Square Error) of SVR under different samples is 0.30, and the average MAE (Mean Absolute Error) is 0.45, with high prediction accuracy. After PSO optimization, the energy saving rate and load balancing rate of the dispatching system under high load conditions increased by 5% and 10% respectively, the dispatching time was shortened by 15 seconds, and the fault response time was shortened by 15 seconds, with higher dispatching efficiency and real-time performance.

References

S.K. Rathor, D. Saxena. Energy management system for smart grid: An overview and key issues. International Journal of Energy Research, 2020, 44(6), 4067-4109. DOI: 10.1002/er.4883

O.M. Butt, M. Zulqarnain, T.M. Butt. Recent advancement in smart grid technology: Future prospects in the electrical power network. Ain Shams Engineering Journal, 2021, 12(1), 687-695. DOI: 10.1016/j.asej.2020.05.004

M.B. Mollah, J. Zhao, D. Niyato, K.Y. Lam, X. Zhang, et al. Blockchain for future smart grid: A comprehensive survey. IEEE Internet of Things Journal, 2020, 8(1), 18-43. DOI: 10.1109/JIOT.2020.2993601

A.A.G. Agung, R. Handayani. Blockchain for smart grid. Journal of King Saud University-Computer and Information Sciences, 2022, 34(3), 666-675. DOI: 10.1016/j.jksuci.2020.01.002

E. Sarker, P. Halder, M. Seyedmahmoudian, E. Jamei, B. Horan, et al. Progress on the demand side management in smart grid and optimization approaches. International Journal of Energy Research, 2021, 45(1), 36-64. DOI: 10.1002/er.5631

M.H. Ullah, R. Eskandarpour, H.H. Zheng, A. Khodaei. Quantum computing for smart grid applications. IET Generation, Transmission & Distribution, 2022, 16(21), 4239-4257. DOI: 10.1049/gtd2.12602

R.H. Lin, Y.Y. Zhao, B.D. Wu. Toward a hydrogen society: Hydrogen and smart grid integration. International Journal of Hydrogen Energy, 2020, 45(39), 20164-20175. DOI: 10.1016/j.ijhydene.2020.01.047

U. Bhadani. Pillars of power system and security of smart grid. International Journal of Innovative Research in Science Engineering and Technology, 2024, 13(7), 13888. DOI: 10.15680/IJIRSET.2024.1307178

Y. Kim, S. Hakak, A. Ghorbani. Smart grid security: Attacks and defence techniques. IET Smart Grid, 2023, 6(2), 103-123. DOI: 10.1049/stg2.12090

P. Zhuang, T. Zamir, H. Liang. Blockchain for cybersecurity in smart grid: A comprehensive survey. IEEE Transactions on Industrial Informatics, 2020, 17(1), 3-19. DOI: 10.1109/TII.2020.2998479

I. Siniosoglou, P. Radoglou-Grammatikis, G. Efstathopoulos, P. Fouliras, P. Sarigiannidis. A unified deep learning anomaly detection and classification approach for smart grid environments. IEEE Transactions on Network and Service Management, 2021, 18(2), 1137-1151. DOI: 10.1109/TNSM.2021.3078381

M.N. Nafees, N. Saxena, A. Cardenas, S. Grijalva, P. Burnap. Smart grid cyber-physical situational awareness of complex operational technology attacks: A review. ACM Computing Surveys, 2023, 55(10), 1-36. DOI: 10.1145/3565570

Z. Su, Y.T. Wang, T.H. Luan, N. Zhang, F. Li, et al. Secure and efficient federated learning for smart grid with edge-cloud collaboration. IEEE Transactions on Industrial Informatics, 2021, 18(2), 1333-1344. DOI: 10.1109/TII.2021.3095506

M. Tanveer, A.U. Khan, N. Kumar, A. Naushad, S.A. Chaudhry. A robust access control protocol for the smart grid systems. IEEE Internet of Things Journal, 2021, 9(9), 6855-6865. DOI: 10.1109/JIOT.2021.3113469

S. Vahidi, M. Ghafouri, M. Au, M. Kassouf, A. Mohammadi, et al. Security of wide-area monitoring, protection, and control (WAMPAC) systems of the smart grid: A survey on challenges and opportunities. IEEE Communications Surveys & Tutorials, 2023, 25(2), 1294-1335. DOI: 10.1109/COMST.2023.3251899

S. Das, P. Acharjee, A. Bhattacharya. Charging scheduling of electric vehicle incorporating grid-to-vehicle and vehicle-to-grid technology considering in smart grid. IEEE Transactions on Industry Applications, 2020, 57(2), 1688-1702. DOI: 10.1109/TIA.2020.3041808

Y. Li, X.H. Wei, Y.Z. Li, Z.Y. Dong, M. Shahidehpour. Detection of false data injection attacks in smart grid: A secure federated deep learning approach. IEEE Transactions on Smart Grid, 2022, 13(6), 4862-4872. DOI: 10.1109/TSG.2022.3204796

Y.T. Wang, Z. Su, N. Zhang, J.F. Chen, X. Sun, et al. SPDS: A secure and auditable private data sharing scheme for smart grid based on blockchain. IEEE Transactions on Industrial Informatics, 2020, 17(11), 7688-7699. DOI: 10.1109/TII.2020.3040171

S.G. Malla, J.M.R. Malla, P. Malla, S. Ramasamy, S.K. Doniparthi, et al. Coordinated power management and control of renewable energy sources based smart grid. International Journal of Emerging Electric Power Systems, 2022, 23(2), 261-276. DOI: 10.1515/ijeeps-2021-0113

W.Z. Wang, H.K. Huang, L. Zhang, C.H. Su. Secure and efficient mutual authentication protocol for smart grid under blockchain. Peer-to-Peer Networking and Applications, 2021, 14(5), 2681-2693. DOI: 10.1007/s12083-020-01020-2

B. Predić, L. Jovanovic, V. Simic, N. Bacanin, M. Zivkovic, et al. Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. Complex & Intelligent Systems, 2024, 10(2), 2249-2269. DOI: 10.1007/s40747-023-01265-3

Y.M. Jiang, M.S. Liu, Y.Y. Li, Y.P. Liu, J.Y. Zhang, et al. Enhanced neighborhood node graph neural networks for load forecasting in smart grid. International Journal of Machine Learning and Cybernetics, 2024, 15(1), 129-148. DOI: 10.1007/s13042-023-01796-8

C.C. Sun, Y. Ning, D.R. Shen, T.Z. Nie. Graph Neural Network-Based ShortTerm Load Forecasting with Temporal Convolution. Data Science and Engineering, 2024, 9(2), 113-132. DOI: 10.1007/s41019-023-00233-8

J.Y. Liu, D. Li, Z.L. Wang, W.S. Wang, M. Li. Flexible load control of new energy based on improved genetic algorithm. Wind Engineering, 2024, 48(2), 165-175. DOI: 10.1177/0309524X231203685

G. Singh, A.K. Chaturvedi. Hybrid modified particle swarm optimization with genetic algorithm (GA) based workflow scheduling in cloud-fog environment for multi-objective optimization. Cluster Computing, 2024, 27(2), 1947-1964. DOI: 10.1007/s10586-023-04071-1

X.Y. Wang, H.Y. Zhu, X.Y. Luo, S.P. Chang, X.P. Guan. An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2024, 238(14), 348-361. DOI: 10.1177/09576509231205342

Z.Y. Liu, J.W. Ma, D. Xia, S. Jiang, Z.Y. Ren, et al. Toward the reliable prediction of reservoir landslide displacement using earthworm optimization algorithm-optimized support vector regression (EOA-SVR). Natural Hazards, 2024, 120(4), 3165-3188. DOI: 10.1007/s11069-023-06322-1

H.J. Wen, J.F. Xiao, X.K. Xiang, X.F. Wang, W.G. Zhang. Singular spectrum analysis-based hybrid PSO-GSA-SVR model for predicting displacement of step-like landslides: a case of Jiuxianping landslide. Acta Geotechnica, 2024, 19(4), 1835-1852. DOI: 10.1007/s11440-023-02050-9

H.W. Xu, W. Qin, Y.N. Sun, Y.L. Lv, J. Zhang. Attention mechanism-based deep learning for heat load prediction in blast furnace ironmaking process. Journal of Intelligent Manufacturing, 2024, 35(3), 1207-1220. DOI: 10.1007/s10845-023-02106-3

P. Attiwal, S. Indora. A Comprehensive Review of Modern Methods for Load Prediction in the Smart Grid. Recent Patents on Engineering, 2024, 18(4), 40-51. DOI: 10.2174/1872212118666230423143331

H.L. Yao, A. Topper. Cooling Load Prediction via Support Vector Regression in Individual and Hybrid Approaches. Journal of Artificial Intelligence and System Modelling, 2024, 1(02), 66-82. DOI: 10.22034/jaism.2024.445961.1027

B. Gamgula, B.P. Saripalli. Enhanced dynamic inertia particle swarm optimization with velocity clamping for accurate parameter extraction in one-diode and two-diode solar PV models. World Journal of Engineering, 2025. DOI: 10.1108/WJE-08-2024-0442

C. Ding, Q.C. Ding, Z.Y. Wang, Y.Y. Zhou. Fault diagnosis of oil‐immersed transformers based on the improved sparrow search algorithm optimised support vector machine. IET Electric Power Applications, 2022, 16(9), 985-995. DOI: 10.1049/elp2.12204

M. Fallah Najafabadi, H. Talebi Rostami, K. Hosseinzadeh, D.D. Ganji. Thermal analysis of a moving fin using the radial basis function approximation. Heat Transfer, 2021, 50(8), 7553-7567. DOI: 10.1002/htj.22242

D.Q. Zhang, N. Zhang, N. Ye, J.G. Fang and X. Han. Hybrid learning algorithm of radial basis function networks for reliability analysis. IEEE Transactions on Reliability, 2020, 70(3), 887-900. DOI: 10.1109/TR.2020.3001232

J. Wu, Q.F. Kong, K.M. Yang, Y.H. Liu, D.P. Cao, et al. Research on the steering torque control for intelligent vehicles co-driving with the penalty factor of human–machine intervention. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(1), 59-70. DOI: 10.1109/TSMC.2022.3166991

C. Yan, K.S. Li, Y. Lei. GEP Automatic Clustering Algorithm with Dynamic Penalty Factors. Journal of System Simulation, 2020, 28(4), 806-814. DOI: 1004-731X (2016) 04-0806-09

Downloads

Published

2025-07-25

Issue

Section

Articles