Effective thermal conductance of thermoelectric generator modules
DOI:
https://doi.org/10.24084/repqj15.387Keywords:
Thermoelectric generator, TEG module, Waste heat recoveryAbstract
Recent studies have analyzed the viability of generating electricity by means of thermoelectric modules applied to processes with large amounts of waste heat. The simulation of the performance of large-scale designs of thermoelectric generators (TEGs), however, is a very complex task since it involves a coupling between both electrical and thermal phenomena. In addition, a single TEG module contains tenths of small P-type and N-type semiconductor legs, which implies that the simulation must take into account domains with characteristic lengths that vary several orders of magnitude. Here, we propose a methodology for determining the effective heat conductance of a single TEG module that can be employed for simulating the entire element without entry into the details of its inner composition. The effective thermal conductance here proposed can be understood as the coefficient that predicts, at different operating conditions, an upper bound of the electrical power generated by the TEG module.