The Future of Industrial Design: Incorporating Water Energy Solutions for Green Manufacturing Using an Enhanced Adaptive Neuro-Fuzzy Inference System with Red Deer Algorithm

Authors

  • Xiaoxia Lu Nantong Institute of Technology, Nantong, 226002, China; Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China Author

DOI:

https://doi.org/10.52152/4314

Keywords:

Water Energy, Green Manufacturing, Sustainable Industrial Design, ANFIS, RDA

Abstract

In response to the increasing demand for sustainable energy solutions in industrial design, this study proposes an Enhanced Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized by the Red Deer Algorithm (RDA) to enhance the efficiency and adaptability of water-based energy systems for green manufacturing. The ANFIS model is employed to accurately predict and optimize complex nonlinear relationships in water energy utilization, while the RDA enhances parameter tuning to achieve superior system performance. Real-time adaptive control is realized through the proposed approach, minimizing operational costs and improving the reliability of energy systems. Key factors such as energy conversion efficiency, water flow dynamics, and environmental impacts are integrated into machine learning-driven predictive models for comprehensive system analysis. Comparative results demonstrate that the ANFIS-RDA framework significantly outperforms traditional optimization methods in energy savings and resource utilization, offering a transformative pathway towards carbon-negative, energy-efficient, and eco-friendly industrial production processes.

References

.M., P., A. K. Dogra, M. K. Shrivastava, V. D. Sharan, and A. Singh. "Green Manufacturing: An Analysis of Sustainable Manufacturing Techniques", In Advancing Social Equity Through Accessible Green Innovation, pp. 219-236. IGI Global Scientific Publishing, 2025. DOI: 10.4018/979-8-3693-9471-7.ch014.

.A., R., F. Giametta, B. Bianchi, and P. Catalano. "Green Hydrogen for Energy Transition: A Critical Perspective", Energies, vol.18, no. 2, 2025. DOI: 10.3390/en18020404

.B., R., D. SK. Ting, and R. Carriveau. "Feasibility and optimization of hybrid energy systems for sustainable electricity, heat, and fresh water production in a rural community." International Journal of Green Energy, pp.1-19, 2025. DOI: https://doi.org/10.1080/15435075.2024.2448292.

.P., A., P. R. d. Costa, G.H. S.M.de Moraes, F.d. S. Meirelles, and R. Anholon. "Exploring digital solutions for sustainable production: academic insights and practical applications." International Journal of Sustainable Engineering, vol. 18, no. 1, 2025. DOI: https://doi.org/10.1080/19397038.2025.2453938.

.Hassan, Ahmed A., Mohamed M. Awad, and Mohamed Nasser. "Towards clean energy independence: Assessing MENA region hybrid PV-wind solutions for green hydrogen generation and storage and 24/7 power production", Sustainable Energy Technologies and Assessments, vol.73,2025. DOI: https://doi.org/10.1016/j.seta.2024.104158.

.C., N., and M. Sadrzadeh, "Optimizing sustainable energy systems: A comparative study of geothermal-powered desalination for green hydrogen production”, Desalination, vol.593, 2025. DOI: https://doi.org/10.1016/j.desal.2024.118219.

.A., F., M.E., A.B.L.d. S. Jabbour, C.J. C. Jabbour, and N. Gulko. "Maximising sustainable performance: Integrating servitisation innovation into green sustainable supply chain management under the influence of governance and Industry 4.0." Journal of Business Research, vol.186, 2025. DOI: https://doi.org/10.1016/j.jbusres.2024.115029

.Y., C., S.N. Ozdemir, U.Kocak, and N. Tokgoz. "Techno-economic analysis and experimental validation of solar-assisted low-temperature water electrolysis for green hydrogen production: Insights from Afyonkarahisar”, Fuel, vol.383, no.133762, 2025. DOI: https://doi.org/10.1016/j.fuel.2024.133762.

.Z., Y., Q. Xue, L.Chen, J.Zhang, Y. Xie, L. Lu, H. Guo, C.Qin, and J.Wang. "Toward the efficient and accurate management of the water-energy nexus: Optimization modeling based on urban resource metabolic mechanism identification." Applied Energy, vol.382, no.125194, 2025. DOI: https://doi.org/10.1016/j.apenergy.2024.125194.

.K., M. Mahbub, K. S.Im, L.Tijing, Y. Choden, Sherub Phuntsho, Md Fazlul Karim Mamun, Golam Md Sabur, Sang Yong Nam, and Ho Kyong Shon. "Integrated membrane distillation-solid electrolyte-based alkaline water electrolysis for enhancing green hydrogen production." Desalination 601, no. 11858 (2025). DOI: https://doi.org/10.1016/j.desal.2025.118580.

.V., N., and A. P. Murthy. "Recent Developments in Membrane‐Free Hybrid Water Electrolysis for Low‐Cost Hydrogen Production Along with Value‐Added Products." Small 20, no. 52 (2024): 2407845. DOI: https://doi.org/10.1002/smll.202407845

.T., J., K. Guo, D. Guan, Y. Hao, and Z. Shao. "A semi-vapor electrolysis technology for hydrogen generation from wide water resources." Energy & Environmental Science 17, no. 19 (2024): 7394-7402. DOI: https://doi.org/10.1039/D4EE02722A

.K., M., P. Lu, P. Ochonma, and G. Gadikota. "Electrochemical Coproduction of Hydrogen, Oxygen, Sodium Hydroxide, and Hydrochloric Acid from Brines via Direct Electrosynthesis with Chlorine Suppression." Energy & Fuels 38, no. 16 (2024): 15812-15822. DOI: https://doi.org/10.1021/acs.energyfuels.4c00865

.S., R., Y. Morales, E. Pomp, J. Singer, K. Chavan, and F. Saravia. "Thermally driven ultrapure water production for water electrolysis–A techno-economic analysis of membrane distillation." Desalination (2025): 118848. DOI: https://doi.org/10.1016/j.desal.2025.118848

.Y., D., C. Liu, Y. Zhang, S. Wang, Y. Nie, M. Qiao, and D. Zhu. "Modulating Selectivity and Stability of the Direct Seawater Electrolysis for Sustainable Green Hydrogen Production." Materials Today Catalysis (2025): 100089. DOI: https://doi.org/10.1016/j.mtcata.2025.100089

.A., T., G. J. Millar, and J. Love. "Thermal management of water electrolysis using membrane distillation to produce pure water for hydrogen production." Journal of Water Process Engineering 67 (2024): 106255. DOI: https://doi.org/10.1016/j.jwpe.2024.106255

.G. Nieto, P. José, E. G. Gonzalo, B. M. P. Sánchez, and J. P. P. Sánchez. "Modelling hydrogen production from biomass pyrolysis for energy systems using machine learning techniques." Environmental Science and Pollution Research 30, no. 31 (2023): 76977-76991. DOI: https://doi.org/10.1007/s11356-023-27805-5

.A., A. Ali, E.S. M. El-Kenawy, M. A. Saeed, A. Ibrahim, A. A. Abdelhamid, M. M. Eid, M. El-Said, D. S. Khafaga, L. Abualigah, and O. Elbaksawi. "Green hydrogen production ensemble forecasting based on hybrid dynamic optimization algorithm." Frontiers in Energy Research 11 (2023): 1221006. DOI: https://doi.org/10.3389/fenrg.2023.1221006

.K., A., S. Tiwari, N. Gupta, and P. Sharma. "Machine learning modelling and optimization for metal hydride hydrogen storage systems." Sustainable Energy & Fuels 8, no. 9 (2024): 2073-2086. DOI: DOI

https://doi.org/10.1039/D4SE00031E

.K., O., I. Alsaduni, M. Parvez, and A.K. Yadav. "Enhancing hydrogen production using solar-driven photocatalysis with biosynthesized nanocomposites: A hybrid machine learning approach towards enhanced performance and sustainable environment." International Journal of Hydrogen Energy 102 (2025): 609-625. DOI: https://doi.org/10.1016/j.ijhydene.2025.01.037

.A., K., M. Nachtane, A. Faik, A. Rachid, M. Tarfaoui, and D. Saifaoui. "A deep learning-enhanced framework for sustainable hydrogen production from solar and wind energy in the Moroccan Sahara: coastal regions focus." Energy Conversion and Management 302 (2024): 118084. DOI: https://doi.org/10.1016/j.enconman.2024.118084

.W., M., D. Unguder, X. Lu, H. Ohlmeyer, H. Teschke, and W. Lueke. "Building the green hydrogen market–Current state and outlook on green hydrogen demand and electrolyzer manufacturing." International Journal of Hydrogen Energy 47, no. 79 (2022): 33551-33570. DOI: https://doi.org/10.1016/j.ijhydene.2022.07.253

.K., V., V. Erhart, K. Angerer, S. Roth, and A. Hohmann. "Decentral Production of Green Hydrogen for Energy Systems: An Economically and Environmentally Viable Solution for Surplus Self-Generated Energy in Manufacturing Companies?." Sustainability 15, no. 4 (2023): 2994. DOI: https://doi.org/10.3390/su15042994

.G., E., and O. Zhdaneev. "Development of electrolysis technologies for hydrogen production: A case study of green steel manufacturing in the Russian Federation." Environmental Technology & Innovation 27 (2022): 102517. DOI: https://doi.org/10.1016/j.eti.2022.102517

.S., Y. OM, F. B. Effah, and P. Y. Okyere. "Fractional order ANFIS controllers for LFC in RES integrated three-area power system." Journal of Electrical Systems and Information Technology 12, no. 1 (2025): 10. DOI: https://doi.org/10.1186/s43067-025-00200-5

.G., Y., R. Yang, Z. Zhang, and B. Han. "ANFIS-Based Course Controller Using MMG Maneuvering Model." Journal of Marine Science and Engineering 13, no. 3 (2025): 490. DOI: https://doi.org/10.3390/jmse13030490

.R., M. Sadiqur, and M. H. Ali. "Adaptive Neuro Fuzzy Inference System (ANFIS)-Based Control for Solving the Misalignment Problem inVehicle-to-Vehicle Dynamic Wireless Charging Systems." Electronics 14, no. 3 (2025): 507. DOI: DOI: 10.36227/techrxiv.172954514.43347885/v1

.N., F., S. Khatoon, I., S. Urooj, M. Shahid, A. Ali, and N. Nasser. "Hybrid ANFIS-PI-Based Optimization for Improved Power Conversion in DFIG Wind Turbine." Sustainability 17, no. 6 (2025): 2454. https://doi.org/10.3390/su17062454

.S., J., and M. B. Veerayan. "ANN and ANFIS Based Control Approaches for Enhanced Performance of Solar PV Driven Water Pumping Systems Employing Quasi Z-Source Converter." Journal of Electrical Engineering & Technology 19, no. 5 (2024): 3499-3513. DOI: https://doi.org/10.1007/s42835-023-01778-4

.R., S., and A. A. Rassafi. "Analyzing the Performance of the Red Deer Optimization Algorithm in Comparison to Other Metaheuristic Algorithms." Journal of AI and Data Mining 13, no. 1 (2025): 53-61. DOI: 10.22044/jadm.2025.14868.2586

.A., S., and G. Yugandhar. "Hybrid Red Deer and Improved Fireworks Optimization Algorithm–based Clustering Protocol for improving network longevity with energy stability in WSNs." International Journal of Communication Systems 37, no. 18 (2024): e5948. DOI: https://doi.org/10.1002/dac.5948

.A., D. A., and M. A. Yakout. "Sparse deep encoded features with enhanced sinogramic red deer optimization for fault inspection in wafer maps." Journal of Intelligent Manufacturing (2024): 1-39. DOI: https://doi.org/10.1007/s10845-024-02377-4

.G., R. A., S. R. Gupta, and M. A. Pund. "Feature optimization using Hybrid Metaheuristic Red Deer and Dragonfly Algorithms for Multi-disease prediction." Multimedia Tools and Applications (2024): 1-17. DOI: https://doi.org/10.1007/s11042-024-19369-4

.K., R. Hendra, and G. Sunitha. "Big data analytics in healthcare environment using chaotic red deer optimizer with deep learning for disease classification model." Multimedia Tools and Applications 83, no. 32 (2024): 77697-77715. DOI: https://doi.org/10.1007/s11042-024-18239-3

.M., M., and D. P. Acharjya. "A hybridized red deer and rough set clinical information retrieval system for hepatitis B diagnosis." Scientific Reports 14, no. 1 (2024): 3815. DOI: https://doi.org/10.1038/s41598-024-53170-5

Downloads

Published

2025-07-25

Issue

Section

Articles