Reactive Power Configuration Method for Steady-State Overvoltage in Hydropower Distribution Network Based on Impedance Modulus Margin Index

Authors

  • Yunfeng Yang Qinghai Huanghe Hydropower Development Co., Ltd., Xining, 810000, Qinghai Province, China Author
  • Shutao Hao Qinghai Huanghe Hydropower Development Co., Ltd., Xining, 810000, Qinghai Province, China Author
  • Duan Zhang Qinghai Huanghe Hydropower Development Co., Ltd., Xining, 810000, Qinghai Province, China Author
  • Zhangyong Wei NR Electric Co., Ltd., Nanjing, 211102, Jiangsu Province, China Author

DOI:

https://doi.org/10.52152/4170

Keywords:

Power Grid Stability, Voltage Stability Control, Reactive Power Optimization, Impedance Modulus Margin, Reinforcement Learning Algorithm

Abstract

Existing reactive power configuration methods cannot fully consider the impact of dynamic changes in grid topology and load fluctuations when evaluating impedance characteristics and voltage margin, making it difficult to achieve precise regulation in steady-state overvoltage control. To address this issue, this paper firstly constructs a simulation model based on digital twins to simulate the operation status of the power grid in real-time and calculate the impedance modulus margin (IMM) index of each node to precisely evaluate the voltage stability. Then, the grid topology is modeled by graph neural network (GNN); the voltage stability information and reactive power demand between nodes are extracted; the key nodes are identified based on this information. Finally, the PPO (Proximal Policy Optimization) algorithm is utilized to optimize the configuration of reactive power compensation equipment and determine its optimal layout and operation strategy. The experimental outcomes demonstrate that the system voltage stability margin reaches 0.35 in the scenario of multi-equipment collaborative work, and the steady-state overvoltage amplitude is limited to 1.02 times the rated voltage. The research results demonstrate the importance of the IMM-based reactive power configuration method proposed in this paper to enhance the security and voltage stability of hydropower distribution networks.

References

V.U. Oguanobi, O. Joel. Geoscientific research's influence on renewable energy policies and ecological balancing. Open Access Research Journal of Multidisciplinary Studies, 2024, 7(2), 073-085. DOI: 10.53022/oarjms.2024.7.2.0027

S.F. Stefenon, K.C. Yow, A. Nied, L.H. Meyer. Classification of distribution power grid structures using inception v3 deep neural network. Electrical Engineering, 2022, 104, 4557-4569. DOI: 10.1007/s00202-022-01641-1

P.K. Vishwakarma, M.R. Suyambu. The Impact of Incorporation Renewable Energy on Resilience and Stability of Power Grid System. International Journal of Innovative Science and Research Technology, 2024, 9(10), 1519-1526. DOI: 10.38124/ijisrt/IJISRT24OCT1529

Y.J. Yan, Y.D. Liu, J. Fang, Y.F. Lu, X.C. Jiang. Application status and development trends for intelligent perception of distribution network. High Voltage, 2021, 938-954. DOI: 10.1049/hve2.12159

A. Mishra, T. Manish, P. Ray. A survey on different techniques for distribution network reconfiguration. Journal of Engineering Research, 2023, 173-181. DOI: 10.1016/j.jer.2023.09.001

H. Tian, H.Z. Liu, H. Ma, P.F. Zhang, X.H. Qin, et al. Steady-state voltage-control method considering large-scale wind-power transmission using half-wavelength transmission lines. Global Energy Interconnection, 2021, 4(3), 239-250. DOI: 10.1016/j.gloei.2021.07.009

A. Amanipoor, M.S. Golsorkhi, N. Bayati, M. Savaghebi. V-Iq based control scheme for mitigation of transient overvoltage in distribution feeders with high PV penetration. IEEE Transactions on Sustainable Energy, 2023, 14(1), 283-296. DOI: 10.1109/TSTE.2022.3211179

S. Xiao, Z.J. Wang, G.N. Wu, Y.J. Guo, G.Q. Gao, et al. The impact analysis of operational overvoltage on traction transformers for high-speed trains based on the improved capacitor network methodology. IEEE Transactions on Transportation Electrification, 2024, 10(1), 364-378. DOI: 10.1109/TTE.2023.3283668

L.X. Cui, D.D. Wang, S.P. Yao, S.M. Wei, H.D. Gao, et al. The Life Cycle Cost Evaluation Model of Typical Power Grid Equipment Asset. Advances in Engineering Technology Research, 2024, 12(1), 363-363. DOI: 10.56028/aetr.12.1.363.2024

N. Li, X.L. Wang, C.Q. Li, W.W. Zhang, Z.J. Zhang. Research on the evaluation method of power grid equipment input–output efficiency based on LCC. Energy Reports, 2023, 9, 1412-1418. DOI: 10.1016/j.egyr.2023.05.212

B. Stone Jr, E. Mallen, M. Rajput, C.J. Gronlund, A.M. Broadbent, et al. Compound climate and infrastructure events: how electrical grid failure alters heat wave risk. Environmental Science & Technology, 2021, 55(10), 6957-6964. DOI: 10.1021/acs.est.1c00024

S. Kumar, A. Pandey, P. Goswami, P. Pentayya, F. Kazi. Analysis of mumbai grid failure restoration on oct 12, 2020: Challenges and lessons learnt. IEEE Transactions on Power Systems, 2022, 37(6), 4555-4567. DOI: 10.1109/TPWRS.2022.3155070

Zhigang, Z. H. A. N. G., and K. A. N. G. Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future. Proceedings of the CSEE 42.8 (2022): 2806-2818. DOI: 10.1109/TPWRS.2022.3155070

R.A. Ufa, Y.Y. Malkova, V.E. Rudnik, M.V. Andreev, V.A. Borisov. A review on distributed generation impacts on electric power system. International Journal of Hydrogen Energy, 2022, 47(47), 20347-20361. DOI: 10.1016/j.ijhydene.2022.04.142

P. Ashok, M. Ganesh Madhan. Impedance Characteristics of a Bi-section Gain Lever Laser Diode for 5G Applications. Arabian Journal for Science and Engineering, 2023, 48(6), 8181-8188. DOI: 10.1007/s13369-023-07813-w

C. Kumar, M. Lakshmanan, S. Jaisiva, K. Prabaakaran, S. Barua, et al. Reactive power control in renewable rich power grids: A literature review. IET Renewable Power Generation, 2023, 17(5), 1303-1327. DOI: 10.1049/rpg2.12674

D. Hu, Z.H. Ye, Y.Q. Gao, Z.Z. Ye, Y.G. Peng, et al. Multi-agent deep reinforcement learning for voltage control with coordinated active and reactive power optimization. IEEE Transactions on Smart Grid, 2022, 13(6), 4873-4886. DOI: 10.1109/TSG.2022.3185975

M.A.M. Shaheen, H.M. Hasanien, A. Alkuhayli. A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Engineering Journal, 2021, 12(1), 621-630. DOI: 10.1016/j.asej.2020.07.011

H. Yapici. Solution of optimal reactive power dispatch problem using pathfinder algorithm. Engineering Optimization, 2021,53(11), 1946-1963. DOI: 10.1080/0305215X.2020.1839443

X.Y. Liang, H. Chai, J. Ravishankar. Analytical methods of voltage stability in renewable dominated power systems: a review. Electricity, 2022, 3(1), 75-107. DOI: 10.3390/electricity3010006

A.R. Nageswa Rao, P. Vijaya, M. Kowsalya. Voltage stability indices for stability assessment: a review. International Journal of Ambient Energy, 2021, 42(7), 829-845. DOI: 10.1080/01430750.2018.1525585

S.S. Kanojia, B.N. Suthar. Voltage stability index: a review based on analytical method, formulation and comparison in renewable dominated power system. International Journal of Applied, 2024, 13(2), 508-520. DOI: 10.11591/ijape.v13.i2.pp508-520

X.Z. Sun, J. Qiu. A customized voltage control strategy for electric vehicles in distribution networks with reinforcement learning method. IEEE Transactions on Industrial Informatics, 2021, 17(10), 6852-6863. DOI: 10.1109/TII.2021.3050039

X.Z. Sun, J. Qiu. Hierarchical voltage control strategy in distribution networks considering customized charging navigation of electric vehicles. IEEE Transactions on Smart Grid, 2021, 12(6), 4752-4764. DOI: 10.1109/TSG.2021.3094891

X.F. Liu, P. Zhang. Adaptive transient overvoltage control strategy for wind farm based on data‐driven method. IET Electric Power Applications, 2023, 18(4), 413-424. DOI: 10.1049/elp2.12400

J.R. Chen, M.Y. Liu, F. Milano. Aggregated model of virtual power plants for transient frequency and voltage stability analysis. IEEE Transactions on Power Systems, 2021, 36(5), 4366-4375. DOI: 10.1109/TPWRS.2021.3063280

S. Mokred, Y.F. Wang, T.C. Chen. A novel collapse prediction index for voltage stability analysis and contingency ranking in power systems. Protection and Control of Modern Power Systems, 2023, 8(1), 1-27. DOI: 10.1186/s41601-023-00279-w

S. Omi, Y. Shirai. Robust calculation method of voltage stability margin based on voltage‐collapse‐point properties. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(11), 1463-1469. DOI: 10.1002/tee.23449

A.M.S. Alonso, L.D.O. Arenas, D.I. Brandao, E. Tedeschi, F.P. Marafao. Integrated local and coordinated overvoltage control to increase energy feed-in and expand DER participation in low-voltage networks. IEEE Transactions on Sustainable Energy, 2022, 13(2), 1049-1061. DOI: 10.1109/TSTE.2022.3146196

Z.H.A.N.G. Yuanyuan, H.A.N. Bin, Q.I.N. Xiaohui, Y.I.X.I. Cuomu, L.I. Suning, et al. Overvoltage Mechanism, Properties and Restriction Requirements of AC Half-wave Length Transmission System. Power System Technology, 2022, 47(6), 2452-2462. DOI: 10.13335/j.1000-3673.pst.2022.1636

A. Eid, S. Kamel, L. Abualigah. Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks. Neural Computing and Applications, 2021, 33(21), 14327-14355. DOI: 10.1007/s00521-021-06078-4

M.K. Kar, S. Kumar, A.K. Singh, S. Panigrahi. Reactive power management by using a modified differential evolution algorithm. Optimal Control Applications and Methods, 2023, 44(2), 967-986. DOI: 10.1002/oca.2815

L. Kumar, M.K. Kar, S. Kumar. Reactive power management of transmission network using evolutionary techniques. Journal of Electrical Engineering & Technology, 2023, 18(1), 123-145. DOI: 10.1007/s42835-022-01185-1

F.J. Hao, G. Zhang, J. Chen, Z.G. Liu. Distributed reactive power compensation method in DC traction power systems with reversible substations. IEEE Transactions on Vehicular Technology, 2021, 70(10), 9935-9944. DOI: 10.1109/TVT.2021.3108030

M. Tofighi‐Milani, S. Fattaheian-Dehkordi, M. Fotuhi-Firuzabad, M. Lehtonen. Distributed reactive power management in multi‐agent energy systems considering voltage profile improvement. IET Generation, Transmission & Distribution, 2023, 17(21), 4891-4906. DOI: 10.1049/gtd2.13005

Y.Q. Ji, X.H. Chen, T. Wang, P. He, N. Jin, et al. Dynamic reactive power optimization of distribution network with distributed generation based on fuzzy time clustering. IET Generation, Transmission & Distribution, 2021, 16(7), 1349-1363. DOI: 10.1049/gtd2.12370

A.S. Alayande, I.K. Okakwu, O.E. Olabode, C.C. Ike, A.A. Makinde. Estimation and Allocation of Reactive Power Loss in Interconnected Power Systems Through Network Structural Characteristics Theory. Arabian Journal for Science and Engineering, 2020, 46(2), 1225-1239. DOI: 10.1007/s13369-020-04944-2

M.H. Hassan, S. Kamel, M.A. El-Dabah, T. Khurshaid, J.L. Dominguez-Garcia. Optimal reactive power dispatch with time-varying demand and renewable energy uncertainty using Rao-3 algorithm. IEEE Access, 2021, 9, 23264-23283. DOI: 10.1109/ACCESS.2021.3056423

G.U.O. Ting, C.H.E.N. Zhonghao, X.U. Liangde, Y.A.N.G Fan. Research on the Two-stage Multi-objective Optimal Configuration Method of Reactive Power Compensation Devices in Power Grid Based on Power Loss Index. Journal of Electrical Engineering, 2024, 18(4), 239-250. DOI: 10.11985/2023.04.026

Downloads

Published

2025-07-25

Issue

Section

Articles