Research on LLM Method for Knowledge-Assisted Generation of Power Standards
DOI:
https://doi.org/10.52152/4073Keywords:
Large language model, Retrieval, Power standards knowledge, Knowledge-assisted, Knowledge generationAbstract
With the rapid development of large language models, their application in various industries is becoming more and more common, especially in the power sector. Electricity power standard knowledge, as an industry specification for electric power equipment, engineering construction and operation management, can guide product production and engineering practice to improve production efficiency and quality level. In order to help solve the problem of low efficiency of electric power standard knowledge supply and assist the generation of electric power standard knowledge, we proposes an electric standard knowledge auxiliary generation method based on retrieval enhancement generation, which uses the retrieval model and evaluation model to provide large language model with accurate external knowledge, and then uses the generation model to provide a more efficient and accurate solution for the generation of standard knowledge in the electric industry. The experimental results indicate that the approach introduced in this paper can effectively generate accurate electricity-related knowledge and holds significant practical value.
References
J.P. Burde, T. Wilhelm. Teaching electric circuits with a focus on potential differences. Physical Review Physics Education Research. 2020, 16(2), 020153. DOI: 10.1103/PhysRevPhysEducRes.16.020153
K. Altmeyer, S. Kapp, M. Thees, S. Malone, J. Kuhn, et al. The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses-Theoretical background and empirical results. British Journal of Educational Technology. 2020, 51(3), 611-628. DOI: 10.1111/bjet.12900
I.L. Alberts, L. Mercolli, T. Pyka, G. Prenosil, K. Shi, et al. Large language models (LLM) and ChatGPT: what will the impact on nuclear medicine be? European Journal of Nuclear Medicine and Molecular Imaging. 2023, 50(6), 1549-1552. DOI: 10.1007/s00259-023-06172-w
O. Friha, M.A. Ferrag, B. Kantarci, B. Cakmak, A. Ozgun, et al. Llm-based edge intelligence: A comprehensive survey on architectures, applications, security and trustworthiness. IEEE Open Journal of the Communications Society. 2024, 5, 5799-5856. DOI: 10.1109/OJCOMS.2024.3456549
N. Firoozeh, A. Nazarenko, F. Alizon, B. Daille. Keyword extraction: Issues and methods. Natural Language Engineering. 2020, 26(3), 259-291. DOI: 10.1017/S1351324919000457
S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, et al. Unifying large language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data Engineering. 2024, 36(7), 3580-3599. DOI: 10.1109/TKDE.2024.3352100
K. Janowicz, S. Gao, G. McKenzie,Y. Hu, B. Bhaduri. GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science. 2020, 34(4), 625-636. DOI: 10.1080/13658816.2019.1684500
T. Nguyen Quang, T.O. Nguyen. Language Knowledge-Assisted in Topology Construction for Skeleton-Based Action Recognition. Proceedings of the 12th International Symposium on Information and Communication Technology. 2023, 443-449. DOI: 10.1145/3628797.3629008
J.K. Kim, M. Chua, M. Rickard, A. Lorenzo. ChatGPT and large language model (LLM) chatbots: The current state of acceptability and a proposal for guidelines on utilization in academic medicine. Journal of Pediatric Urology. 2023, 19(5), 598-604. DOI: 10.1016/j.jpurol.2023.05.018
C. Peng, F. Xia, M. Naseriparsa, F. Osborne. Knowledge graphs: Opportunities and challenges. Artificial Intelligence Review. 2023, 56(11), 13071-13102. DOI: 10.1007/s10462-023-10465-9
R. Venkatakrishnan, E. Tanyildizi, M.A. Canbaz. Semantic interlinking of Immigration Data using LLMs for Knowledge Graph Construction. WWW ‘24: Companion Proceedings of the ACM on Web Conference 2024. 2024, 605-608. DOI: 10.1145/3589335.3651557
L.Y. Yang, C. Lv, X. Wang, J. Qiao, W.P. Ding, et al. Collective entity alignment for knowledge fusion of power grid dispatching knowledge graphs. IEEE/CAA Journal of Automatica Sinica. 2022, 9(11), 1990-2004. DOI: 10.1109/JAS.2022.105947
L.P. Meyer, C. Stadler, J. Frey, N. Radtke, K. Junghanns, et al. Llm-assisted knowledge graph engineering: Experiments with chatgpt. First Working conference on Artificial Intelligence Development for a Resilient and Sustainable Tomorrow. Wiesbaden: Springer Fachmedien Wiesbaden. 2023, 103-115. DOI: 10.1007/978-3-658-43705-3_8
J. Varas, B.V. Coronel, I. Villagrán, G. Escalona, R. Hernandez, et al. Innovations in surgical training: exploring the role of artificial intelligence and large language models (LLM). Revista do Colégio Brasileiro de Cirurgiões. 2023, 50, e20233605. DOI: 10.1590/0100-6991e-20233605-en
Y.C. Zhuang, Y. Yu, K. Wang, H. Sun, C. Zhang. Toolqa: A dataset for llm question answering with external tools. Advances in Neural Information Processing Systems. 2023, 36, 50117-50143. DOI: 10.48550/arXiv.2306.13304
G. Sun, W. Jin, S. Xu, L.X. Yang, W.J. Song. Research on Constructing a Knowledge Graph for Risk-Aware Electricity Marketing Events. 3rd International Conference on Digital Economy and Computer Application (DECA 2023). Atlantis Press. 2023, 677-688. DOI: 10.2991/978-94-6463-304-7_71
R.K. Mishra, H. Raj, S. Urolagin, J. Jothi, N. Nawaz. Cluster-based knowledge graph and entity-relation representation on tourism economical sentiments. Applied Sciences. 2022, 12(16), 8105. DOI: 10.3390/app12168105
J. Chen, Y. Geng, Z. Chen, J.Z. Pan, Y. He, et al. Zero-shot and few-shot learning with knowledge graphs: A comprehensive survey. Pro-ceedings of the IEEE. 2023, PP(99), 1-33. DOI: 10.1109/JPROC.2023.3279374
A.D. Pace, A. Tommasel, H.C. Vazquez. The JavaScript Package Selection Task: A Comparative Experiment Using an LLM-based Approach. CLEI Electronic Journal. 2023, 27(2), 4: 1-4: 19. DOI: 10.19153/cleiej.27.2.4
A. Biswas, W. Talukdar. Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM). Journal of Science & Technology. 2023, 4(6), 55-82. DOI: 10.55662/JST.2023.4605
J.K. Kim, M. Chua, M. Rickard, A. Lorenzo. ChatGPT and large language model (LLM) chatbots: The current state of acceptability and a proposal for guidelines on utilization in academic medicine. Journal of Pediatric Urology. 2023, 19(5), 598-604. DOI: 10.1016/j.jpurol.2023.05.018
J. Vizcarra, S. Haruta, M. Kurokawa. Representing the Interaction between Users and Products via LLM-assisted Knowledge Graph Construction. 2024 IEEE 18th International Conference on Semantic Computing (ICSC). IEEE. 2024, 231-232. DOI: 10.1109/ICSC59802.2024.00043
S. Kernan Freire, C. Wang, M. Foosherian, S. Wellsandt, S. Ruiz-Arenas, et al. Knowledge sharing in manufacturing using LLM-powered tools: user study and model benchmarking. Frontiers in Artificial Intelligence. 2024, 7, 1293084. DOI: 10.3389/frai.2024.1293084
L. Xia, C. Li, C. Zhang, S. Liu, P. Zheng. Leveraging error-assisted fine-tuning large language models for manufacturing excellence. Robotics and Computer-Integrated Manufacturing. 2024, 88, 102728. DOI: 10.1016/j.rcim.2024.102728
Y. Wang, N. Lipka, R.A. Rossi, A. Siu. Knowledge graph prompting for multi-document question answering. Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(17), 19206-19214. DOI: 10.1609/aaai.v38i17.29889
J. Chen, G. Lu, Z. Pan, Y. Tao. Research review of the knowledge graph and its application in power system dispatching and operation. Frontiers in Energy Research. 2022, 10, 896836. DOI: 10.3389/fenrg.2022.896836
M.J. Zhang, N. Xu, J.H. Hu, Y.F. Wang, C. Li, et al. Knowledge graph construction and intelligent question answering for transformer operation and maintenance. Journal of Global Energy Interconnection. 2020, 3(6), 607-617. DOI: 10.19705/j.cnki.issn2096-5125.2020.06.008
A. Fensel, Z. Akbar, E. Kärle, C. Blank, P. Pixner, et al. Knowledge graphs for online marketing and sales of touristic services. Information. 2020, 11(5), 253. DOI: 10.3390/info11050253