E-maintenance in hydropower energy generation: A case study of Enel Colombia

Authors

  • G. Cortés Sanchéz Enel Colombia O&M Hydro Colombia & Central America Carrera 13A # 93-66 Bogotá (Colombia) Author
  • G. Rodríguez Gómez Enel Colombia O&M Hydro Colombia & Central America Carrera 13A # 93-66 Bogotá (Colombia) Author
  • E. Guevara Pabón Enel Colombia O&M Hydro Colombia & Central America Carrera 13A # 93-66 Bogotá (Colombia) Author
  • T. Fontani Enel Colombia O&M Hydro Colombia & Central America Carrera 13A # 93-66 Bogotá (Colombia) Author
  • I. Durán Tovar Universidad Escuela Colombiana de Ingeniería Julio Garavito Autopista Norte AK 45 No. 205-59 Bogotá (Colombia) Author
  • L. Benavides Navarro Universidad Escuela Colombiana de Ingeniería Julio Garavito Autopista Norte AK 45 No. 205-59 Bogotá (Colombia) Author
  • A. Marulanda Guerra Universidad Escuela Colombiana de Ingeniería Julio Garavito Autopista Norte AK 45 No. 205-59 Bogotá (Colombia) Author

DOI:

https://doi.org/10.52152/3998

Keywords:

E-maintenance, Hydro unit generator, Hydropower energy generation, Machine learning

Abstract

Traditionally, maintenance in the hydropower industry has been a labour-intensive and time-consuming process. It often relies on scheduled inspections and manual intervention. E-maintenance in hydropower plants can help to address this challenge by allowing remote monitoring and control of plant equipment, enabling timely detection and diagnosis of potential problems. This paper presents a case study of the implementation of an e-maintenance strategy for hydropower infrastructure at one of the largest generation companies in the Colombian electricity market.  A machine learning model, implemented by Enel Colombia, is fed with recorded data on turbine bearing temperature and active power generation to predict problems in hydropower generators. The results show how e-maintenance can reduce operating costs and avoid breakdowns in hydro generation.

Downloads

Published

2024-07-28

Issue

Section

Articles