On-line detection of voltage transient disturbances using ANNs

Authors

  • F. J. Alcántara Departamento de Ingeniería Eléctrica y Térmica Escuela Politécnica Superior. Universidad de Huelva Author
  • J. R. Vázquez Departamento de Ingeniería Eléctrica y Térmica Escuela Politécnica Superior. Universidad de Huelva Author
  • P. Salmerón Departamento de Ingeniería Eléctrica y Térmica Escuela Politécnica Superior. Universidad de Huelva Author
  • S. P. Litrán Departamento de Ingeniería Eléctrica y Térmica Escuela Politécnica Superior. Universidad de Huelva Author
  • M. I. Arteaga Orozco Departamento de Ingeniería Eléctrica y Térmica Escuela Politécnica Superior. Universidad de Huelva Author

DOI:

https://doi.org/10.24084/repqj07.406

Keywords:

Electrical power quality, transient disturbances, measurement, artificial neural networks, feedforward

Abstract

The non-quality phenomena of the supply voltage in electrical power systems include transient disturbances as frequency variations, sags, swells, flicker or interruptions. In this work, a method to detect and measure some transient disturbances based on Artificial Neural networks (ANNs) will be presented. A Feedforward network has been trained to detect the initial time, the final time and the magnitude of a voltage disturbance. The design and training process of an ANN specialized in voltage sags detection will be presented. The performance of the designed measure method will be tested in a simulation platform designed in Matlab/Simulink through the analysis of a practical case.

Published

2024-01-24

Issue

Section

Articles