Machine Learning Prediction of Global Photovoltaic Energy in Spain

Authors

  • Y. Gala Author
  • A. Fernández Author
  • J. Dorronsoro Author
  • M. Garcia Author
  • C. Rodríguez Author

DOI:

https://doi.org/10.24084/repqj12.423

Keywords:

Photovoltaic, energy, radiation, NWP, SVR

Abstract

The growing presence of solar energy in the electrical systems of many countries has made its accurate forecasting an important issue. In this work we will explore the application of Support Vector Regression (SVR), an advanced Machine Learning modelling tool, to forecast the daily photovoltaic generation of Spain. Given the very large geographical spread of photovoltaic installations, we will use as input features NWP forecasts of relevant meteorological variables for the entire Iberian Peninsula. The input dimension is thus very large but, while further work is needed, our results show SVR to be an effective tool to deal with the problem's underlying dimension, yield useful forecasts and further provide some insights on the relationship between NWP and actual solar energy production.

Author Biographies

  • Y. Gala

    Dpto. Ing. Informática, Universidad Autónoma de Madrid 
    C/ Francisco Tomás y Valiente, n° 11. EPS, 
    Edificio B, UAM-Cantoblanco. 28049. Madrid. 

  • A. Fernández

    Dpto. Ing. Informática, Universidad Autónoma de Madrid 
    C/ Francisco Tomás y Valiente, n° 11. EPS, 
    Edificio B, UAM-Cantoblanco. 28049. Madrid.  

  • J. Dorronsoro

    Dpto. Ing. Informática, Universidad Autónoma de Madrid 
    C/ Francisco Tomás y Valiente, n° 11. EPS, 
    Edificio B, UAM-Cantoblanco. 28049. Madrid.  

  • M. Garcia

    Red Eléctrica Española (REE)  
    C. Anabel Segura 11, 28108 Alcobendas, Madrid. Spain. 

  • C. Rodríguez

    Red Eléctrica Española (REE)  
    C. Anabel Segura 11, 28108 Alcobendas, Madrid. Spain. 

Downloads

Published

2024-01-24

Issue

Section

Articles