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Abstract. This paper presents an algorithm for the optimal-
operable dispatch of distributed battery banks in systems with
high integration of variable renewable energies. As a test case,
the application of the algorithm is presented in a possible
expansion of the Colombian system 2024-2039, subdivided into
five regions each with its DBESS. The novelty lies in how to
integrate a set of technologies such as stochastic dynamic
programming, with reinforcement learning and optimization of
the marginal benefit of an agent to obtain an operable operation
policy close to the achievable optimum.
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1. Introduction

With the high incorporation of renewable energy with
hourly variability (VRE), such as wind and solar, the
incorporation of Distributed Battery Energy Storage
System (DBESS) energy storage systems that allow
energy to be moved in terms of hours within the same day
becomes an important element that avoids the need to
install new thermal power plants to cover power balance
requirements at transmission level, as well as the need to
expand transformation or transmission capacity to cover
peak hours at distribution level (see [1]).

These storage elements will be installed in a
distributed manner, both at the residential level and at the
transmission station level of the National Interconnected
System (NIS).

Given the time constants involved, with storage
capacities in the order of hours, these storage elements
deserve a different treatment than longer-term energy
reservoirs such as the lakes of hydroelectric plants.

In hydroelectric generating systems, with
reservoirs capable of storing the energy that can be
generated over periods of months to years, optimization
techniques are used to calculate what is known as an
Operating Policy. Traditionally, to obtain an Optimal
Operating Policy (the one that leads to the lowest expected
value of the future operation) a Stochastic Dynamic
Optimization problem is used to solve. In 1957 Richard
Bellman [2] published the algorithm that is now known as

the Bellman Recursion and that is the conceptual basis of
most current implementations. In the same publication
Bellman warned that his solution suffered from the Curse
of Dimensionality, commonly referred to as the Bellman
Curse. The optimal operation of energy dispatch has been
and will continue to be a constant battle against the
Bellman curse. In this battle different weapons have
emerged such as Stochastic Dual Dynamic Programming
(SDDP) [3] or Rolling Horizon [4] or Reinforcement
Learning techniques [5]. A good compendium of different
solutions and systematic approaches to the problem can be
found in books [6] and [7].

An operating policy is ultimately a mapping
between available information and control actions.
Available information can be classified between that
which represents the State of the System and that which is
exogenous to the system. The State of the System can be
represented as a vector X that captures all relevant
information from the system's past and the exogenous
information as a vector that reports, for example, whether
it is raining or not, whether there is good solar radiation,
the price of a barrel of oil, etc. As a system status, it is
common to consider the volume of water stored in the
different reservoirs and the availability of the equipment.

Bellman's Curse implies that as the number of
variables to be considered grows, Bellman's recursion
involves solving subproblems that grow exponentially
with the dimension of the variable space. Just as an
example, if we consider a space of N, variables that
are discretized in N, positions to create the
Operation Policy in N, time steps, N, XN :V ‘
dispatch subproblems must be solved.

The incorporation of VRE, along with an
unquestionable advance in the speed and security of
communications and control elements, means that
reservoirs of hydroelectric plants with a storage capacity
of a few days can be considered as state variables in new
systems, since in the new systems, these energy stores
undoubtedly allow the management of the variability of
the new energies. In the same sense, the incorporation of
DBESS in the different areas of the NIS must be
considered for the optimal operation of the system.



The increase in the variables to be considered
reinforces the need for new strategies to combat the
Bellman curse.

2. Operable policy

An important aspect to consider is the way of
programming the actual operation. In different systems,
dispatching agencies must program in advance, applying
an operating policy, how the operation will be carried out
in real time. From this programming, a dispatch order is
set to be followed by the real-time operators and for the
automatic generation controls (AGC). This way of
operating the systems imposes a certain temporal
parsimony that must be respected in the proposed
solutions to achieve operating policies close to the
optimum. In other words, an optimal operating policy is
one that minimizes the expected value of the future
operation subject to the real operation constrains. These
constrains include the programming and reaction times of
human operators, AGC and the automated systems and
protections that ensure the safe operation of the system.

In addition to the control actions, the
programming of the use of the different resources and of
the subsequent operation must be such that it allows the
generation of price signals that make the operation of the
energy block supply markets with price viable. All this
imposes the need not to exaggerate the granularity of the
temporal representation, given that a certain parsimony is
required for the operation of the dispatch and the markets
to be feasible.

From our point of view, solutions such as those
proposed [8], could be encapsulated within a system-wide
dispatch resolution problem, in a similar way to what is
proposed in the rest of this work for the proposed
algorithm, but they can hardly be incorporated directly
into the actual dispatch programming stages.

3. The proposed operation policy for
integrating DBESS

This paper presents a novel model for SImSEE that allows
optimizing the use of DBESS in different regions of a
system.

As already mentioned, the incorporation of faster
dynamics in the systems implies that state variables
associated with energy storage elements, which were not
necessary before, become relevant for the formation of the
operating policy. This policy must be operable. It must
allow its application to the real programming of the
operation and to the generation of price signals, with
sufficient temporal stability that make the operation of the
real markets viable.

The time necessary for the start-up and shutdown
of the thermal generation plants imposes a daily or higher
dispatch horizon (or programming time step). As an
example, for the management of steam cycle plants,
programming times of the order of 48 to 72 hours are
necessary, while for motor generators and gas turbines
programming times of hours are enough.

In addition to this, it might be included as part of
the DBESS also the capacity of electric vehicle of
providing manageable energy to the system (V2G) within

the day. In line with the previous consideration, this work
presents a strategy to represent and manage DBESS.

In [9] the result of an optimal generation
expansion is presented, in which the competition between
batteries and flexible thermal plants is analyzed. To
calculate the operating policy, the using the -classic
Bellman recursion. The system already had three
hydroelectric plants with reservoirs, so the representation
had to be limited to using a single battery bank in order to
perform the analysis in a reasonable time.

In [5] we presented the application of
reinforcement learning to obtain the optimal policy of
what the Uruguayan system could be in 2050 with 100%
renewable energy supply and with the incorporation of 4
large battery banks. This work showed the feasibility of
obtaining the Operation Policy by increasing the
dimension of the state space by 4.

In this paper we propose an alternative approach
that does not involve increasing the dimension of the state
space. The proposal is applicable to systems with relevant
hydroelectric generation components on which it is
necessary to build an Operation Policy. This methodology
consists of: a) representing as state variables the stored
volumes (or the stored energy) in those reservoirs capable
of storing for periods longer than the programming time-
step, b) representing the DBESS not with state variables
but as market agents that optimize their profit based on
buying or selling their energy at marginal cost, and c)
iterating the dispatch resolution in such a way that the
market takes into consideration the participation of the
DBESS in the formation of the marginal cost.

The optimal dispatch solution at each time step
using the SImSEE [10] platform is performed by posing
an optimization problem that minimizes the cost of
supplying the energy demand of the time step plus the
expected value of the cost of the future operation from the
state in which the system will be at the end of the time
step. It is normally used as a simulation step in SImSEE of
equal duration to the scheduling horizon (for example
daily). To better represent the dispatchable power
requirements, SImSEE subdivides the time step into
different hourly blocks in which it groups the hours of
similar Net Demand value.

The developed model allows defining a DBESS
in a SImSEE Region, thus representing the set of small
energy storage systems, distributed in the different Buses
(of the real network) associated with the represented
SimSEE Region.

The resolution of the dispatch at each time step
using SImSEE poses an optimization problem that is
solved collaboratively between the different Actors
(generators, demands, interconnectors, etc.) including the
instances of the DBESS model that is the object of this
work. At the beginning of the resolution, the Actors are
required to add their energy offers and prices to the
dispatch problem that will be solved centrally. After the
dispatch is resolved (hour by hour of the
programming/simulation horizon), the Actors are given
the opportunity to request a new iteration. For example,
hydroelectric plants present their offers based on an
energy coefficient that they calculate assuming a
disbursed flow. If once the dispatch is resolved the



disbursed flow differs substantially from the assumption,
they will require a new iteration (resolution round).

In the resolution of each time step, iterations are
performed in the resolution of the dispatch of each
Region. In the first iteration, the Net Demand (ND, for a
definition of see [11]) is known, but there is still no
information on the marginal cost ( cmg, ) of the hours
of the time step. In this first iteration, the DBESS does not
intervene in the dispatch and thus the marginal cost of
generation in each hour of the time step is obtained. For
the second iteration, once the cmg, is known, the

h=N
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DBESS solves the optimization problem (1).

Where:
. h=1,2,..N identify the hour inside the
time-step,
. B, is the amount of energy stored at the end
of the hour &
. G, Itisthe power injected by the DBESS to

the NIS, acting as a generator and reducing the
amount of stored energy.

. D, 1Itis the power extracted from the DBESS
from the NIS, acting as a demand and increasing
the amount of stored energy.

. B, , G,z and D,, arethe
minimum storage capacity and the minimum
powers as a generator and as a demand at /1

. By > Gup and D,, arethe
maximum storage capacity and the maximum
powers as a generator and as a demand at /1

. p is the factor that takes into consideration
the battery losses in one hour.

. ne and n, are the charge and discharge
performance of the battery banks.

. cmg, 1s the marginal cost seen by the
DBESS, and represents the cost or savings for the
NIS of extracting or injecting an additional MW
in that hour by the DBESS.

. a 1is the variable cost associated with the
passage of power through the DBESS. In the case
where the storage is a battery bank, this factor
can be directly associated with the degradation of
the battery due to its use.

. vfe  is the future value of the stored energy.
This value must be set for the resolution of the
problem (1). Different strategies can be used,
such as setting that value equal to the

vfe=cmg, , which would imply assuming
that the next time step is expected to start with a

marginal cost equal to the current one, or
considering that the stored energy is worth the
average of the marginal costs of the step.

\{er% D emg, . Or more sophisticated
h

strategies, such as including B, (energy at
the start of the time step) as another state variable
of the SIN and allow to form an Operation Policy
valuing it, or to build a stochastic model that
represents the expected distribution of

cmg,,cmg,,...cmg,  of the next step knowing
that of the current step and based on it create an
operation policy of the DBESS valuing the value
of B,

A. Iterations in the resolution of the dispatch of a
time step

In this way, based on the hourly marginal costs of the
previous iteration, the powers injected or extracted in each
hour of the NIS that maximize the benefit are defined,
charging the battery in the hours of lowest cost and
discharging in the highest cost hours. With this decision of
hourly injections and extractions, the dispatch problem is
raised again and the variation of the marginal costs caused
by the operation of the DBESS is calculated and with the
new series of hourly marginal costs, the iteration is started
again.

In each iteration, the new hourly values of

G, and D, are obtained based on the hourly
values of the marginal cost c¢mg,  of the previous
iteration by solving the optimization problem (1) and re-
posing and solving the time step dispatch problem
(standard SimSEE algorithm) in which the series of
contributions G, and withdrawals D, by the
DBESS are considered.

Generally, B,, and B,,; , limits of the
battery capacity, will be constant over the ours of the same
time-step. They vary over the simulation horizon due to
accidental breakage, degradation, decommissioning or
installation of new battery banks.

The Gus > Gus > Dyg and

D,,, power limits of the DBESS, as well as the
capacity limits, are subject throughout the simulation
horizon to the random and scheduled availability and
installation or decommissioning of the DBESS units. But
also, as explained in the next section, their values during
the hours of the time step under resolution are modified to
ensure the convergence of the iterations.

B. Controlling convergence

As mentioned before, the proposed algorithm implies that
the DBESSs of each region request that the dispatch
resolution be iterated. They do not participate in the first
iteration from which they take the information on hourly
marginal costs and offer for the second iteration the result
of G, and D, from the solution of problem (1).

To control the convergence of this loop of
iterations, the limits of the boxes of the variables G,
and D, are adjusted in a dichotomous way.



Note that since (1) is a linear optimization
problem, its solution is on the border of the polyhedron
that defines the domain of said problem. Note also that the
domain is formed by the box-restrictions of the
optimization variables plus an equality restriction that
takes into account the loading and unloading dynamics
during the hours of the step. It is therefore to be expected
that given a marginal cost hourly-sequence, the solution of
(1) will try to maximise the purchase of energy in the
hours of low marginal costs and maximise the sale in the
hours of high marginal costs, reaching, if possible, the
limits of the box of the respective variables in each hour.
After the resolution of each iteration in which the DBESS
participates, the marginal costs of the system may change,
associated with the action of the DBESS themselves,
increasing in the hours of greatest extraction and
decreasing in those of greatest injection. These changes
are expected if the magnitude of the extractions and
injections produces changes in the generators that
marginalise in the resolution of the dispatch.

In order to control that in the successive
iterations for the resolution of the same time step no
oscillations occur, a modification is made at the beginning
of each iteration of the limits of the power boxes in order
to bring the non-active limit closer to the active limit,
dividing the interval of the box in half.

Assuming that the cost curve of the entire system
is convex, with respect to power injections and
extractions, it can be demonstrated that the described
power adjustment mechanism leads the global
optimization problem (SimSEE + DBESS iterations) to
the optimum. It is not worth going into this demonstration
in depth, since real systems, although from a global
perspective have this convexity (the greater the extraction,
the higher the production costs) in the hourly dispatch, the
effect on the efficiency of partial loads of the thermal
power plants, makes this hypothesis (when the cost
function is examined with a magnifying glass) present
non-convex sections. For this reason we say that the
proposed solution is optimal-operable, since in
mathematical purism the true-optimal could be in some
dispatches somewhat different from the optimal-operable
obtained.

4. Test case and results

As a first test case, the Colombian five DBESS system
model of 40 MWh and with charging and discharging
powers of 10 MW was incorporated. As a starting model
for Colombia for SimSEE, the one available at:
https://sourceforge.net/projects/simsee/files/Modelo Colo
mbia/ was used.

A new operating policy was obtained, using the
SimSEE reinforcement learning facility, on the set of
hydroelectric plants having reservoirs, without and with
the DBESS added according to the proposed model. Then,
simulations of 1000 realizations of the stochastic
processes of both systems were carried out and the
expected reduction in the system cost due to the inclusion
of the DBESS was calculated.

Table I shows the valuation of the DBESS, in
each of the five modelled regions, calculated as the
expected reduction in the operating cost of the system and

distributed by the marginal contribution of each DBESS to
it.

As can be seen from Table I, in this case, there
are no significant differences between the valuation of the
different regions, which would indicate that they are
sufficiently well interconnected so that the location of the
DBESS is not very relevant. Surely, as the system grows
and the incorporation of renewables also grows, if the
transport capacity between the regions is not expanded,
differences will appear.

Table I: Valuation of a 40 MWh battery bank with 10 MW
charging and discharging power. (9% discount rate and 10-year
life)

Oriental Suroccident [Nordeste  |Caribe Antioguia

[US$/kW]  [US$/KW]  |[US$/kW]  [[US$/KW]  |[US$/kW]
2024 112 112 111 112 114
2025 129 132 130 131 134
2026 154 150 148 150 151
2027 96 96 94 95 96
2028 87, 87 86 87, 88
2029 95 96 94 96 96
2030 97 98 96 98 99
2031 96 96 94 96 97
2032 101 102 100 102 102
2033 118 119 117 119 120
2034 131 132 130 132 133
2035 144 146 143 145 147
2036 175 177| 173 176! 177
2037 188! 190 187 190 191
2038 223 226 222 225 227
2039 255 258 253 257 259

According to the IEA report [12] the value of the
cost of battery banks will drop from approximately
250 USD/kWh in 2025 to approximately 150 USD/kWh
by 2040, which would imply, according to the results in
Table I, that if only the benefits of reduced dispatch costs
are considered, their installation would be justified in the
Colombian system from approximately 2034.

5. Conclusion and future work

The proposed algorithm was implemented in SimSEE and
the test case was executed without a significant increase in
the calculation time. Possibly the iterations imposed by
the DBESS overlap those already requested by the
hydraulic generators or other actors in the system.

The work [13], concludes that none of the
Approximate  Stochastic = Dynamic  Programming
algorithms they tested satisfactorily fulfills the task of
solving problems with many distributed energy storages.
Perhaps the crux of the matter is to separate the state
variables associated with processes slower than the
dispatch scheduling step from those associated with faster
processes (including the state of the battery banks). The
Approximate Operation Policy is learned on the slow
variables, considered as state variables of the system. On
the other hand, at each time step, the use of the fast
variables is optimized, within the hours of the time step as
proposed in this work.

As a future work, it could be attempted that
problem (1) involves considering an estimation of the
nodal marginal costs of the real electrical network within
the DBESS area. This would imply increasing the
complexity of solving (1) without increasing the
complexity of solving the global dispatch. This possible



improvement would allow a better assessment of the
contribution of the battery banks installed in the sub-
transmission and distribution network bars, while
maintaining the possibility of taking into consideration
their contribution to the energy dispatch of the region
(market node). Something similar to what was proposed in
[14] but implemented in direct connection with an energy
dispatch programming tool such as SImSEE and allowing
the aggregation of distributed batteries via DBESS
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