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Abstract. The large-scale adoption of electric vehicles (EVs)
requires controlled integration into the power system to avoid security 
and stability issues. While centralised charging strategies offer 
theoretically optimal solutions, they require extensive data and 
communication infrastructure, limiting user flexibility. Conversely, 
collaborative algorithms enhance decentralisation but face challenges 
related to data privacy, real-time communication, and implementation 
complexity. 

To address the urgent need for effective charging strategies, this paper 
proposes an autonomous charging algorithm that minimises charging 
costs while considering battery degradation. Autonomous approaches 
serve as a transitional solution towards collaborative algorithms, 
enabling immediate deployment while maintaining control benefits. 
Two case studies are conducted: one accounting for battery 
degradation and another neglecting it. The results highlight the 
importance of incorporating degradation into charging strategies to 
enhance battery lifespan and ensure a more sustainable EV 
integration. 

Key words. Electric vehicle, charging algorithm, optimal 
charging, autonomous charging algorithm and battery 
degradation. 

1. Introduction

In the context of the energy transition, where renewable energy 
sources, distributed generation, and smart grids are playing an 
increasingly significant role in the power system, electric 
vehicles (EVs) emerge as key enablers of this transition. 
However, the growing adoption of this technology and its 
uncontrolled large-scale integration into the grid may lead to 
various security and stability issues [1]. 

In this regard, a controlled integration of EVs is required 
through charging management strategies that satisfy all 
stakeholders. However, to extend battery lifespan, these 
strategies must consider the degradation induced in the 
batteries by the charging process [2]. 

Although numerous charging standards and modes exist [3-5], 
current EV charging stations are mostly passive elements with 
predefined operations that do not consider other components 
of the grid. Presently, charging stations lack information on 
grid topology, the number of connected chargers, their 

consumption, distributed renewable generation, and energy 
storage systems, among other factors. 

In the near future, a large-scale deployment of charging 
stations is expected. To prevent adverse effects on the grid, 
these stations must be managed as active system elements. 

So far, the few controlled charging strategies that have been 
implemented, have been centralised ones. While this 
centralised approach theoretically achieves a more optimal 
global solution, it requires extensive data and a complex 
communication infrastructure. Additionally, it limits the 
decision-making ability of end users. Moreover, as the 
number of active elements increases, implementing such a 
centralised approach will become increasingly challenging 
[6-8]. 

Collaborative algorithms, on the other hand, can achieve 
individual objectives without compromising global goals. 
However, they rely on real-time communication systems, are 
more vulnerable to data privacy attacks, and often require 
pre-defined charging data. Furthermore, these 
communications are typically conducted via power line 
communication (PLC) technology, which can introduce 
disturbances into the grid. Although collaborative algorithms 
are expected to become the standard in the future, they are 
not yet mature enough for immediate deployment [9-12]. 

In the short and medium term, charging algorithms must be 
sufficiently developed to enable immediate implementation. 
Due to the urgent need for control strategies, autonomous 
algorithms must be developed as a transitional solution 
towards collaborative algorithms. These autonomous 
approaches should combine the benefits of controlled 
charging while allowing for rapid deployment. Additionally, 
they should be relatively easy to implement and integrate, 
providing an effective solution for the imminent large-scale 
adoption of EVs into the power system [13-16]. 

Therefore, this paper presents an autonomous charging 
strategy that minimises charging costs while considering 
battery degradation. Two case studies are conducted using 
the same algorithm: (a) considering degradation and (b) 
disregarding degradation. This comparison allows for an 
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assessment of the impact of degradation in the battery lifespan. 
 
2. Mathematical formulation 
 
In this section, the mathematical formulation of the algorithms 
will be explained [17]. 
 
A. Charging powers 
The charging power of the EV number (𝑖) in the period (𝑡) is 
given in (2-1). Where 𝑉௜,௧

௚௥௜ௗ denotes the grid voltage of the EV 

number (𝑖) in the period (𝑡), 𝐼௜,௧
௏ா denotes the charging current 

of the EV number (𝑖) in the period (𝑡), 𝒯 denotes the total time 
of the charging process, in other words, the sum of all the 
periods to be evaluated. And 𝑁௏ா denotes the total number of 
EVs to be charged. 
 

𝑃௜,௧
௏ா = √3 · 𝑉௜,௧

௚௥௜ௗ
· 𝐼௜,௧

௏ா , ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ 𝑁௏ா 
(2-1) 

 
EVs can be connected to either an individual or a collective 
charging point (CP). In the latter case, multiple EVs share the 
same CP. Similarly, each consumption point (CPt) may have 
one or more consumption loads, may (or may not) include 
distributed generation (DG), and may (or may not) have one or 
more charging points. 
 
Consequently, the total consumption at a CP is defined as the 
sum of all connected consumption loads (𝑃௝,௧

௖௢௡௦) plus the total 
charging power of all EVs connected to that CPt, minus the 
local generation at that CP (𝑃௝,௧

௉௏). This is evaluated for each 
period, as shown in (2-2). 
 

𝑃௝,௧
஼௉ = 𝑃௝,௧

௖௢௡௦ − 𝑃௝,௧
௉௏ + ෍ 𝑃௜,௧

௏ா

ேೇಶ,ೕ

௜ୀଵ

, ∀𝑡 ∈ 𝒯, ∀𝑗 ∈ 𝑁௖௢௡௦,௞ 
(2-2) 

 
The power of a given feeder in a specific period (𝑃௞,௧

௙௘௘ௗ) is 
defined as the sum of the demands from all consumption points 
connected to that feeder during the same evaluation period, 
plus the losses generated by these demands in the feeder's lines 
(𝑃௞,௧

௟௢௦௦,௙௘௘ௗ). This expression is presented in (2-3), while the 
expression for the losses is shown in (2-4). Where 𝑁௖௢௡௦,௞ 
refers to the number of consumption points on feeder 𝑘, 𝑁௙௘௘ௗ  
represents the total number of feeders. 
 

𝑃௞,௧
௙௘௘ௗ

= 𝑃௞,௧
௟௢௦௦,௙௘௘ௗ

+ ෍ 𝑃௝,௧
஼௉

ே೎೚೙ೞ,ೖ

௝ୀଵ

, ∀𝑡 ∈ 𝒯, ∀𝑘 ∈ 𝑁௙௘௘ௗ  
(2-3) 

𝑃௞,௧
௣௘௥ௗ,௙௘௘ௗ

= 𝑓ቌ ෍ 𝑃௝,௧
஼௉

ே೎೚೙ೞ,ೖ

௝ୀଵ

ቍ , ∀𝑡 ∈ 𝒯, ∀𝑘 ∈ 𝑁௙௘௘ௗ  (2-4) 

 
B. Battery degradation 
The battery degradation cannot be calculated for each (𝑡), but 
rather for each charging cycle, that is, for each (𝒯). This is due 
to the significant impact that the Depth of Discharge (DoD) 
has on degradation. 
 
To better understand the expression for battery degradation, 
the variables that make up this expression will first be 
explained. 
 

The voltage of the battery of EV (𝑖) at a given moment (𝑉௜,௧
஻ ) 

is a function of the state of charge (SOC) of the battery at 
that same instant, as shown in (2-5). 
 

𝑉௜,௧
஻ = 𝑓൫𝑆𝑜𝐶௜,௧

஻ ൯, ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ 𝑁௏ா (2-5) 

 
The battery current of EV i in period t (𝐼௜,௧

஻ ) is calculated by 
performing a power balance. That is, the power drawn by EV 
i from the grid, adjusted by the efficiency of its charger (𝜂௜,௧), 
is equal to the power absorbed by the battery. This balance 
is shown in (2-6). 
 

𝐼௜,௧
஻ =

𝑃௜,௧
௏ா · 𝜂௜,௧

𝑉௜,௧
஻ , ∀𝑡 ∈ 𝒯, ∀𝑖 ∈ 𝑁௏ா (2-6) 

 
Since the instantaneous current cannot be used for the 
degradation calculation, the average charging current is 
determined (𝐼௜,𝒯

஻ ). This current is calculated between the 
arrival time (𝑡௜

௔௥௥) and the hour before the departure time 
(𝑡௜
ௗ௘௣), as it is assumed that the EV is not charging at the 

departure time. 
 
It is important to highlight that, for this algorithm to be 
applied, it must be assumed that the Aggregator has access 
to user charging requirements (arrival and departure times, 
energy demands, etc.) or that its prediction is sufficiently 
accurate. See (2-7). 
 

𝐼௜,𝒯
஻ =

∑ 𝐼௜,௧
஻௧೔

೏೐೛
ିଵ

௧೔
ೌೝೝ

𝑡௜
ௗ௘௣

− 𝑡௜
௔௥௥

, ∀𝑖 ∈ 𝑁௏ா 
(2-7) 

 
To calculate the DoD, it is necessary to know in advance the 
SoC at which EV i arrives at the charging point (𝑆𝑜𝐶௜

௔௥௥) and 
the target state of charge at the end of the charging process 
(𝑆𝑜𝐶௜

ௗ௘௣). Consequently, the expression for DoD is given as 
shown in (2-8). 
 

𝐷𝑜𝐷௜,𝒯
஻ = 𝑆𝑜𝐶௜

ௗ௘௣
− 𝑆𝑜𝐶௜

௔௥௥, ∀𝑖 ∈ 𝑁௏ா 
(2-8) 

 
Based on this, the degradation (𝛾௜,𝒯

஻ ) is defined as a function 
of the average charging current, the average charging 
temperature (𝑇௜,𝒯

஻ ), and the DoD to be charged, as shown in 
(2-9). 
 

𝛾௜,𝒯
஻ = 𝑓൫𝐼௜,𝒯

஻ , 𝑇௜,𝒯
஻ , 𝐷𝑜𝐷௜,𝒯

஻ ൯, ∀𝑖 ∈ 𝑁௏ா , ∀𝒯 ∈ 𝑁𝒯  (2-9) 

 
C. Economic analysis 
The total charging cost must consider two aspects: the price 
of electricity and the lost value of the battery due to 
degradation induced during the charging process. 
 
The total electricity cost of charging is calculated as the sum 
of all hourly electricity costs between the arrival and 
departure times, i.e., during the charging period. This hourly 
cost is determined by the product of the energy consumed in 
each period (calculated as the power multiplied by the 
duration of the period) and the price set by the Aggregator 
for that EV at that moment. This is shown in (2-10). Where 
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𝜓௜,௧
ா௏ refers to the price at which EV i purchases electricity in 

period t or, in the case of an Aggregator, the price at which the 
Aggregator sells electricity to the EV. 
 

෍ 𝜓௜,௧
ா௏ · 𝑃௜,௧

ா௏

௧೔
ೞೌ೗೔೏ೌିଵ

௧
೔
೗೗೐೒ೌ೏ೌ

· Δ𝑡, ∀𝑖 ∈ 𝑁௏ா (2-10) 

 
Regarding the degradation cost, it is important to highlight the 
use of the battery's effective price. The EV battery is purchased 
at a price of 𝜓௜

஻,௣௨௥ and is considered to have reached its End 
of Life (EoL) for traction purposes once it reaches 80% of its 
nominal capacity. However, the battery can still be used for 
other applications and could be sold at a price of 𝜓௜

஻,௦௘௟௟. 

Consequently, the effective battery price (𝜓௜
஻,௘௙௘௖) is 

calculated as in (2-11). 
 

𝜓௜
஻,௘௙௘௖

= 𝜓௜
஻,௣௨௥

−𝜓௜
஻,௦௘௟௟  

(2-11) 

 
Consequently, the battery value lost during charging is given 
by the product of the degradation induced by that charging 
cycle and the effective battery price, as shown in (2-12). 
 

𝛾௜,𝒯
஻ · 𝜓௜

஻,௘௙௘௖
, ∀𝑖 ∈ 𝑁௏ா , ∀𝒯 ∈ 𝑁𝒯  

(2-12) 

 
3. Algorithms 
 
Two optimisation algorithms are analysed. On the one hand, 
the effect battery degradation is not considered in the target 
function. On the other hand, the optimisation algorithm takes 
battery aging into account. 
 
A. Without considering the degradation of the batteries 
From now on, this algorithm will be referred as Algorithm A. 
This algorithm minimises the charging cost of each EV. 
 

min
ூ೔,೟
ೇಶ

൞ ෍ 𝜓௜,௧
௏ா · 𝑃௜,௧

௏ா · Δ𝑡

௧೔
ೞೌ೗೔೏ೌିଵ

௧
೔
೗೗೐೒ೌ೏ೌ

ൢ , ∀𝑖 ∈ 𝑁௏ா , ∀𝑡 ∈ 𝒯 

 

(3-1) 

𝑠. 𝑎. ተ ෍ ൣ𝑃௜,௧
௏ா · 𝜂௜,௧ · Δ𝑡൧

௧೔
ೞೌ೗೔೏ೌିଵ

௧
೔
೗೗೐೒ೌ೏ೌ

= 𝐸௜
௖௛௔௥௚௘ 

This optimisation is subject to the condition that the energy 
delivered to the battery equals the energy required to charge 
EV i (𝐸௜

௖௛௔௥௚ ). 
 
B. Considering the degradation of the batteries 
From now on, this algorithm will be referred as Algorithm 
B. This algorithm minimises the charging cost of each EV 
while taking into account the battery degradation. In other 
words, it minimises the total charging cost. 
 

min
ூ೔,೟
ೇಶ

൜∑ 𝜓௜,௧
௏ா · 𝑃௜,௧

௏ா · Δ𝑡
௧೔
ೞೌ೗೔೏ೌିଵ

௧
೔
೗೗೐೒ೌ೏ೌ + 𝛾௜,𝒯

஻ · 𝜓௜
஻,௘௙௘௖

ൠ , ∀𝑖 ∈

𝑁௏ா , ∀𝒯 ∈ 𝑁𝒯  
 

𝑠. 𝑎. ተ ෍ ൣ𝑃௜,௧
௏ா · 𝜂௜,௧ · Δ𝑡൧

௧೔
ೞೌ೗೔೏ೌିଵ

௧
೔
೗೗೐೒ೌ೏ೌ

= 𝐸௜
௖௔௥௚௔ 

(3-2) 

 
The expression (3-2) consists of two terms: a) the total 
electricity cost of charging, as shown in (2-10) and b) the 
battery cost lost during charging, as shown in (2-12). 
 
4. Electrical grid and EV fleet 
 
The validation of the algorithms is performed through 
simulation using the software tools MATLAB R2023a and 
DIgSILENT PowerFactory 2023 SP3. The algorithms are 
implemented in the first one, while the load flow calculations 
are executed in the second one. This approach allows the 
analysis of the impact of battery degradation on the final 
charging cost of the EV. For the battery degradation, model 
from reference [17] has been taken. 
 
A. Electrical grid 
The low-voltage (LV) network used for the load flow 
simulations consists of a 20/0.4 kV Dyn11 transformer with 
a rated power of 0.63 MVA, from which four feeders 
originate. The characteristics of these feeders are detailed in 
Table 4-1 and Fig. 4-1 shows the feeders, the industrial loads 
(in green), the residential loads and the CPs (in red). 
 

 
Fig. 4-1. Feeders and load and CP distribution. 
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Table 4-1. Feeder characteristics. 

Loads 

Industrial / 
commercial  
[number-

power] 

Residential 
[number - 

power] 

PV 
generation 
[number - 

power] 
Feeder 1 1 – 61.55 kW - - 

Feeder 2 
2 – 141.57 

kW 
- - 

Feeder 3 
2 – 135.41 

kW 
5 – 16.25 kW 1 – 3.1 kW 

Feeder 4 1 – 77 kW 26 – 83.6 kW 3 – 11.3 kW 
 
According to the base load (the load profile without taking 
the EV charging into account), Fig. 4-2 shows the 
transformer’s base load and Fig. 4-3 the ones of the feeders, 
both for 48 h. 
 

 
Fig. 4-2. Transformer's base load. 

 
Fig. 4-3. Feeders' base load. 

 
B. EV fleet 
Table 4-2 shows the different EV models and their 
characteristics used for the simulations [18]. In total, 200 
EV were simulated. 
 

Table 4-2. EV models and their characteristics. 

EV model Quantity 
Battery 
capacity 
[kWh] 

Charger 
max. 

power 
[kW] 

Charger 
efficiency 

Chevrolet 
Bolt EV 

34 60 7,2 0,84 

Nissan Leaf 
3 

13 24 3,3 0,885 

Nissan Leaf 
6 

13 40 6,6 0,895 

Peugeot e-
208 11 

54 60 11 0,9 

Peugeot e-
208 7 

34 60 7,2 0,89 

Tesla S 11 5 85 11 0,87 
Volkswagen 
e-Golf 

47 36 7,2 0,945 

 
The vehicles are randomly distributed among 22 CPs, and 
for each EV, the arrival time, departure time, and required 
charging energy are known. These values were generated 
using a Truncated Normal Distribution, represented in 
(4-1), with parameters detailed in Table 4-3. 
 

𝑓(𝑥; 𝜇, 𝜎, 𝑎, 𝑏) =
1

𝜎
·

𝜑 ቀ
𝑥 − 𝜇
𝜎

ቁ

Φ ቀ
𝑏 − 𝜇
𝜎

ቁ − Φቀ
𝑎 − 𝜇
𝜎

ቁ
 (4-1) 

Where: 
 𝜇: mean value. 
 𝜎: standard deviation. 
 𝑎: minimum value of 𝑥. 
 𝑏: maximum value of 𝑥. 
 𝜑: probability density function. 
 Φ: distribution function of the normal distribution. 
 −∞ < 𝑎 < 𝑏 < +∞. 
 𝑎 ≤ 𝑥 ≤ 𝑏. 
 

Table 4-3. EV charging data. 

 𝝁 𝝈 𝒂 𝒃 
Arrival time 17 h 2 h 15 h 21 h 
Departure time 9 h 1,25 h 6 h 13 h 
SoC at the arrival 60% 15% 10% 80% 
Desired SoC 87,5% 5% 80% 95% 

 
5. Study cases 
 
The study cases must validate the developed charging 
strategies and allow a comparison between them. In this 
regard, the following scenarios are designed for the 
feeders: 
 
 Feeder 1: This feeder has a low base load and a small 

number of EVs. The objective is to analyse the 
economic impact of considering battery degradation 
when optimising the charging process. 

 Feeder 2: This feeder has a low base load but a high 
number of EVs. The goal is to assess the importance 
of accounting for battery degradation in charging 
optimisation algorithms. 

 Feeder 3: This feeder also has a low base load but 
features a peak load. 

 Feeder 4: Similar to Feeder 3 but with a wider peak 
in the base load and fewer EVs. 

 
Regarding the charging algorithms, the two algorithms 
described in Section 3 have been considered. In this sense, 
two cases can be distinguished: 
 Case A: simulation performed using the Algorithm A. 
 Case B: simulation performed using the Algorithm B. 

T
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For both cases, the used electricity price is shown in Fig. 
5-1. 

 
Fig. 5-1. Electricity price. 

 
6. Results and discussion 
 
On the one hand, Fig. 6-1 and Fig. 6-2 show the base load 
(dashed black) of the transformer and the feeders, as well as 
the simulation results of Case A (green) and Case B (blue). 
On the other hand, Fig. 6-3 shows the total charging cost 
and Fig. 6-4 shows the charging cost per feeder. 
 

 
Fig. 6-1. Transformer´s load. 

 
Fig. 6-2. Feeders' load. 

 

 
Fig. 6-3. Total charging cost. 

 
Fig. 6-4. Charging cost per feeder. 

 
From Fig. 6-1 and Fig. 6-2, it can be observed that in Case 
A, the optimisation algorithm does not consider battery 
degradation. As a result, EV charging is concentrated 
during periods when electricity prices are lowest. This 
occurs because the algorithm aims to minimise charging 
costs. However, this leads to high current peaks during 
those hours, as all EVs charge simultaneously, causing 
both transformer and feeder saturation. 
 
In contrast, in Case B, degradation is taken into account, 
preventing excessive current peaks. This happens because 
high current peaks accelerate battery degradation 
(considered as capacity loss and internal resistance 
increment). This peaks, increase the overall charging cost. 
Therefore, the algorithm penalises such peaks, distributing 
the charging more evenly. 
 
Similarly, from Fig. 6-3 and Fig. 6-4, it can be seen that 
although electricity prices are lower in Case A, the total 
charging cost is lower in Case B, making it the more cost-
effective option overall. 
 
Table 6-1 and Table 6-2 show the electricity component of 
the charging cost and the degradation component of the 
charging cost, respectively. 
 
Table 6-1. Electricity cost per feeder and case in €/kWh. 

 Case A Case B 
FD 1 0,11907 0,126724 
FD 2 0,119917 0,144398 
FD 3 0,120025 0,139257 
FD 4 0,11957 0,133336 

Table 6-2. Degradation cost per feeder and case in €/EV. 

 Case A Case B 
FD 1 0,568784 0,156306 
FD 2 0,642153 0,0947019 
FD 3 0,573819 0,112201 
FD 4 0,625039 0,13786 

 
7. Conclusions 
 
A charging algorithm for EVs has been presented and 
tested in two scenarios. In one scenario, the optimisation 
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algorithm did not consider battery degradation, while in the 
other, it did. To demonstrate its effectiveness, various 
scenarios were designed for each feeder, and seven different 
EV models were used. 
 
Analysing the results, it can be concluded that considering 
battery degradation in the optimisation algorithm is crucial. 
Although electricity prices are lower when degradation is 
not accounted for, the overall charging cost is lower when it 
is included. Moreover, when degradation is ignored, EV 
charging is concentrated during the cheapest electricity 
periods, which can lead to feeder and transformer 
saturation. 
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