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Abstract. The large-scale adoption of electric vehicles (EVs)
requires controlled integration into the power system to avoid security
and stability issues. While centralised charging strategies offer
theoretically optimal solutions, they require extensive data and
communication infrastructure, limiting user flexibility. Conversely,
collaborative algorithms enhance decentralisation but face challenges
related to data privacy, real-time communication, and implementation
complexity.

To address the urgent need for effective charging strategies, this paper
proposes an autonomous charging algorithm that minimises charging
costs while considering battery degradation. Autonomous approaches
serve as a transitional solution towards collaborative algorithms,
enabling immediate deployment while maintaining control benefits.
Two case studies are conducted: one accounting for battery
degradation and another neglecting it. The results highlight the
importance of incorporating degradation into charging strategies to
enhance battery lifespan and ensure a more sustainable EV
integration.

Key words. Electric vehicle, charging algorithm, optimal
charging, autonomous charging algorithm and battery
degradation.

1. Introduction

In the context of the energy transition, where renewable energy
sources, distributed generation, and smart grids are playing an
increasingly significant role in the power system, electric
vehicles (EVs) emerge as key enablers of this transition.
However, the growing adoption of this technology and its
uncontrolled large-scale integration into the grid may lead to
various security and stability issues [1].

In this regard, a controlled integration of EVs is required
through charging management strategies that satisfy all
stakeholders. However, to extend battery lifespan, these
strategies must consider the degradation induced in the
batteries by the charging process [2].

Although numerous charging standards and modes exist [3-5],
current EV charging stations are mostly passive elements with
predefined operations that do not consider other components
of the grid. Presently, charging stations lack information on
grid topology, the number of connected chargers, their
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consumption, distributed renewable generation, and energy
storage systems, among other factors.

In the near future, a large-scale deployment of charging
stations is expected. To prevent adverse effects on the grid,
these stations must be managed as active system elements.

So far, the few controlled charging strategies that have been
implemented, have been centralised ones. While this
centralised approach theoretically achieves a more optimal
global solution, it requires extensive data and a complex
communication infrastructure. Additionally, it limits the
decision-making ability of end users. Moreover, as the
number of active elements increases, implementing such a
centralised approach will become increasingly challenging
[6-8].

Collaborative algorithms, on the other hand, can achieve
individual objectives without compromising global goals.
However, they rely on real-time communication systems, are
more vulnerable to data privacy attacks, and often require
pre-defined  charging  data.  Furthermore, these
communications are typically conducted via power line
communication (PLC) technology, which can introduce
disturbances into the grid. Although collaborative algorithms
are expected to become the standard in the future, they are
not yet mature enough for immediate deployment [9-12].

In the short and medium term, charging algorithms must be
sufficiently developed to enable immediate implementation.
Due to the urgent need for control strategies, autonomous
algorithms must be developed as a transitional solution
towards collaborative algorithms. These autonomous
approaches should combine the benefits of controlled
charging while allowing for rapid deployment. Additionally,
they should be relatively easy to implement and integrate,
providing an effective solution for the imminent large-scale
adoption of EVs into the power system [13-16].

Therefore, this paper presents an autonomous charging
strategy that minimises charging costs while considering
battery degradation. Two case studies are conducted using
the same algorithm: (a) considering degradation and (b)
disregarding degradation. This comparison allows for an



assessment of the impact of degradation in the battery lifespan.
2. Mathematical formulation

In this section, the mathematical formulation of the algorithms
will be explained [17].

A. Charging powers

The charging power of the EV number (i) in the period (t) is
given in (2-1). Where Vifﬁd denotes the grid voltage of the EV
number (i) in the period (t), Ii'f £ denotes the charging current
of the EV number (7) in the period (t), T denotes the total time
of the charging process, in other words, the sum of all the

periods to be evaluated. And Ny denotes the total number of
EVs to be charged.

PYE =3V IVE, vt € T,Vi € Nyg @D

EVs can be connected to either an individual or a collective
charging point (CP). In the latter case, multiple EVs share the
same CP. Similarly, each consumption point (CPt) may have
one or more consumption loads, may (or may not) include
distributed generation (DG), and may (or may not) have one or
more charging points.

Consequently, the total consumption at a CP is defined as the
sum of all connected consumption loads (P{{"*) plus the total
charging power of all EVs connected to that CPt, minus the
local generation at that CP (P/}). This is evaluated for each

period, as shown in (2-2).
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The power of a given feeder in a specific period (Pk’f f Ed) is

defined as the sum of the demands from all consumption points
connected to that feeder during the same evaluation period,
plus the losses generated by these demands in the feeder's lines
(Pkl“’tss‘f ¢edy This expression is presented in (2-3), while the
expression for the losses is shown in (2-4). Where N ons k
refers to the number of consumption points on feeder k, Nreq
represents the total number of feeders.
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B. Battery degradation

The battery degradation cannot be calculated for each (t), but
rather for each charging cycle, that is, for each (7). This is due
to the significant impact that the Depth of Discharge (DoD)
has on degradation.

To better understand the expression for battery degradation,
the variables that make up this expression will first be
explained.
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The voltage of the battery of EV (i) at a given moment (Viﬁ

is a function of the state of charge (SOC) of the battery at
that same instant, as shown in (2-5).

VE = f(SoCE),Vt € T, Vi € Nyj (2-5)

The battery current of EV i in period t (I%) is calculated by
performing a power balance. That is, the power drawn by EV
i from the grid, adjusted by the efficiency of its charger (1; ;),
is equal to the power absorbed by the battery. This balance
is shown in (2-6).

VE
_ Py Mg

5= (2-6)
Vi,t

,Vt € T,Vi € Nyg

Since the instantaneous current cannot be used for the
degradation calculation, the average charging current is
determined (I7;). This current is calculated between the
arrival time (t'") and the hour before the departure time
(tlfi ®P), as it is assumed that the EV is not charging at the
departure time.

It is important to highlight that, for this algorithm to be
applied, it must be assumed that the Aggregator has access
to user charging requirements (arrival and departure times,
energy demands, etc.) or that its prediction is sufficiently
accurate. See (2-7).
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To calculate the DoD, it is necessary to know in advance the
SoC at which EV i arrives at the charging point (SoC{*"") and
the target state of charge at the end of the charging process

(SoC idep). Consequently, the expression for DoD is given as
shown in (2-8).

DoDf; = SoC{? — SoC{™,Vi € Ny (2-8)

Based on this, the degradation (yfT) is defined as a function
of the average charging current, the average charging
temperature (TfT), and the DoD to be charged, as shown in
(2-9).

. 2-9
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C. Economic analysis

The total charging cost must consider two aspects: the price
of electricity and the lost value of the battery due to
degradation induced during the charging process.

The total electricity cost of charging is calculated as the sum
of all hourly electricity costs between the arrival and
departure times, i.e., during the charging period. This hourly
cost is determined by the product of the energy consumed in
each period (calculated as the power multiplied by the
duration of the period) and the price set by the Aggregator
for that EV at that moment. This is shown in (2-10). Where



ﬂ/ refers to the price at which EV i purchases electricity in
period ¢ or, in the case of an Aggregator, the price at which the
Aggregator sells electricity to the EV.

tisalida_:l
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Regarding the degradation cost, it is important to highlight the
use of the battery's effective price. The EV battery is purchased
at a price of 1. ""*" and is considered to have reached its End
of Life (EoL) for traction purposes once it reaches 80% of its
nominal capacity. However, the battery can still be used for
B,sell

other applications and could be sold at a price of ;

Consequently, the effective battery price (zpl,B'ef ey
calculated as in (2-11).

¢iB,efec — ¢iB,pur (2-11)

_ lpf?,sell

Consequently, the battery value lost during charging is given
by the product of the degradation induced by that charging
cycle and the effective battery price, as shown in (2-12).

vE P Vi € Nyg, VT € Ny (2-12)

3. Algorithms

Two optimisation algorithms are analysed. On the one hand,
the effect battery degradation is not considered in the target
function. On the other hand, the optimisation algorithm takes
battery aging into account.

A. Without considering the degradation of the batteries
From now on, this algorithm will be referred as Algorithm A.
This algorithm minimises the charging cost of each EV.
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This optimisation is subject to the condition that the energy
delivered to the battery equals the energy required to charge

EVi(E"9).

t

B. Considering the degradation of the batteries

From now on, this algorithm will be referred as Algorithm
B. This algorithm minimises the charging cost of each EV
while taking into account the battery degradation. In other
words, it minimises the total charging cost.
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The expression (3-2) consists of two terms: a) the total
electricity cost of charging, as shown in (2-10) and b) the
battery cost lost during charging, as shown in (2-12).

4. Electrical grid and EV fleet

The validation of the algorithms is performed through
simulation using the software tools MATLAB R2023a and
DIgSILENT PowerFactory 2023 SP3. The algorithms are
implemented in the first one, while the load flow calculations
are executed in the second one. This approach allows the
analysis of the impact of battery degradation on the final
charging cost of the EV. For the battery degradation, model
from reference [17] has been taken.

A. Electrical grid

The low-voltage (LV) network used for the load flow
simulations consists of a 20/0.4 kV Dynl1 transformer with
a rated power of 0.63 MVA, from which four feeders
originate. The characteristics of these feeders are detailed in
Table 4-1 and Fig. 4-1 shows the feeders, the industrial loads
(in green), the residential loads and the CPs (in red).

HT‘&FWTT l ll__é IRRIERERER l il“ll_—ll__é
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Fig. 4-1. Feeders and load and CP distribution.

25



Table 4-1. Feeder characteristics.

Industrial / . . PV
. Residential .
commercial generation
Loads [number -
[number- [number -
power]
power]| power]|
Feeder 1 1-61.55kW - -
2 - 141.57
Feeder 2 KW - -
Feeder 3 2_11\35‘41 5-1625kW | 1-3.1kW
Feeder 4 1-77kW 26-83.6 kW | 3-11.3kW

According to the base load (the load profile without taking
the EV charging into account), Fig. 4-2 shows the
transformer’s base load and Fig. 4-3 the ones of the feeders,
both for 48 h.
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Fig. 4-2. Transformer's base load.
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Fig. 4-3. Feeders' base load.
B. EV fleet

Table 4-2 shows the different EV models and their
characteristics used for the simulations [18]. In total, 200
EV were simulated.

Table 4-2. EV models and their characteristics.

Charger
. Battery max. Charger
EV model | Quantity | capacity ffici
KWh power | efficiency
Chevrolet
Bolt EV 34 60 7,2 0,84
fissanbeal [y 24 33 0,885
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16\““3“ Leaf 13 40 6,6 0,895
Peugeot e-

20811 54 60 11 0,9
Peugeot e-

087 34 60 7.2 0,89
Tesla S 11 5 85 11 0,87
Volkswagen 47 36 7.2 0,945
e-Golf ’ i

The vehicles are randomly distributed among 22 CPs, and
for each EV, the arrival time, departure time, and required
charging energy are known. These values were generated
using a Truncated Normal Distribution, represented in
(4-1), with parameters detailed in Table 4-3.

¢ (x 5 #) (4-1)

(1) - ()

1
fG;u0,a,b)=—-
7 9

Where:

W: mean value.

o standard deviation.

a: minimum value of x.

b: maximum value of x.

@: probability density function.

@: distribution function of the normal distribution.
—o<a<b<+om,

a<x<bh.

Table 4-3. EV charging data.

n g a b
Arrival time 17h 2h 15h | 21 h
Departure time 9h 1,25h | 6h | 13h
SoC at the arrival | 60% 15% 10% | 80%
Desired SoC 87.5% 5% 80% | 95%

5. Study cases

The study cases must validate the developed charging
strategies and allow a comparison between them. In this
regard, the following scenarios are designed for the
feeders:

e Feeder 1: This feeder has a low base load and a small
number of EVs. The objective is to analyse the
economic impact of considering battery degradation
when optimising the charging process.

e Feeder 2: This feeder has a low base load but a high
number of EVs. The goal is to assess the importance
of accounting for battery degradation in charging
optimisation algorithms.

e Feeder 3: This feeder also has a low base load but
features a peak load.

e Feeder 4: Similar to Feeder 3 but with a wider peak
in the base load and fewer EVs.

Regarding the charging algorithms, the two algorithms
described in Section 3 have been considered. In this sense,
two cases can be distinguished:

e Case A: simulation performed using the Algorithm A.
e Case B: simulation performed using the Algorithm B.



For both cases, the used electricity price is shown in Fig.
5-1.

0.22

02
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Elecricity price (€/kWh)
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Time (h)

Fig. 5-1. Electricity price.

6. Results and discussion

On the one hand, Fig. 6-1 and Fig. 6-2 show the base load
(dashed black) of the transformer and the feeders, as well as
the simulation results of Case A (green) and Case B (blue).
On the other hand, Fig. 6-3 shows the total charging cost
and Fig. 6-4 shows the charging cost per feeder.
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Fig. 6-1. Transformer’s load.
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Fig. 6-2. Feeders' load.
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Fig. 6-3. Total charging cost.
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Fig. 6-4. Charging cost per feeder.

Case B

Case A

Case B

From Fig. 6-1 and Fig. 6-2, it can be observed that in Case
A, the optimisation algorithm does not consider battery
degradation. As a result, EV charging is concentrated
during periods when electricity prices are lowest. This
occurs because the algorithm aims to minimise charging
costs. However, this leads to high current peaks during
those hours, as all EVs charge simultaneously, causing
both transformer and feeder saturation.

In contrast, in Case B, degradation is taken into account,
preventing excessive current peaks. This happens because
high current peaks accelerate battery degradation
(considered as capacity loss and internal resistance
increment). This peaks, increase the overall charging cost.
Therefore, the algorithm penalises such peaks, distributing
the charging more evenly.

Similarly, from Fig. 6-3 and Fig. 6-4, it can be seen that
although electricity prices are lower in Case A, the total
charging cost is lower in Case B, making it the more cost-
effective option overall.

Table 6-1 and Table 6-2 show the electricity component of
the charging cost and the degradation component of the

charging cost, respectively.

Table 6-1. Electricity cost per feeder and case in €/kWh.

Case A Case B
FD1 | 0,11907 | 0,126724
FD2 | 0,119917 | 0,144398
FD 3 | 0,120025 | 0,139257
FD4 | 0,11957 | 0,133336

Table 6-2. Degradation cost per feeder and case in €/EV.

Case A Case B
FD1 | 0,568784 | 0,156306
FD 2 | 0,642153 | 0,0947019
FD 3 | 0,573819 | 0,112201
FD 4 | 0,625039 | 0,13786

7. Conclusions

A charging algorithm for EVs has been presented and
tested in two scenarios. In one scenario, the optimisation




algorithm did not consider battery degradation, while in the
other, it did. To demonstrate its effectiveness, various
scenarios were designed for each feeder, and seven different
EV models were used.

Analysing the results, it can be concluded that considering
battery degradation in the optimisation algorithm is crucial.
Although electricity prices are lower when degradation is
not accounted for, the overall charging cost is lower when it
is included. Moreover, when degradation is ignored, EV
charging is concentrated during the cheapest electricity
periods, which can lead to feeder and transformer
saturation.

8. Acknowledgement

The authors thank the Basque Government, GISEL research
group (IT1522-22) and the University of the Basque
Country UPV/EHU for their support. The authors declare
no conflict of interest.

9. References

[1] O. Sadeghian, A. Oshnoei, B. Mohammadi-ivatloo, V.
Vahidinasab and A.  Anvari-Moghaddam, "A
comprehensive review on electric vehicles smart charging:
Solutions, strategies, technologies, and challenges", Journal
of Energy Storage, vol. 54, pags. 105241, 2022.

[2] T. Montes, F. Pinsach Batet, L. Igualada and J. Eichman,
"Degradation-conscious charge management: Comparison
of different techniques to include battery degradation in
Electric Vehicle Charging Optimization", Journal of Energy
Storage, vol. 88, pags. 111560, 2024.

[3] S. Hemavathi and A. Shinisha, "A study on trends and
developments in electric vehicle charging technologies",
Journal of Energy Storage, vol. 52, pags. 105013, 2022.

[4] H.S. Das, M.M. Rahman, S. Li and C.W. Tan, "Electric
vehicles standards, charging infrastructure, and impact on
grid integration: A technological review", Renewable and
Sustainable Energy Reviews, vol. 120, pags. 109618, 2020.

[5] R.P. Narasipuram and S. Mopidevi, "A technological
overview & design considerations for developing electric
vehicle charging stations", Journal of Energy Storage, vol.
43, pags. 103225, 2021.

[6] X. Zhang, Z. Wang and Z. Lu, "Multi-objective load
dispatch for microgrid with electric vehicles using modified
gravitational search and particle swarm optimization
algorithm", Applied Energy, vol. 306, pags. 118018, 2022.

[71 W. Yin and Z. Ming, "Electric vehicle charging and
discharging scheduling strategy based on local search and
competitive learning particle swarm optimization
algorithm", Journal of Energy Storage, vol. 42, pags.
102966, 2021.

[8] E.h. Margoum, H. Mharzi, S. Faddel, A. Saad and O.
Mohammed, "Coordinated Control Scheme for Electric
Vehicles Connected to Droop-Controlled MicroGrids",

28

2019 IEEE Transportation Electrification Conference and
Expo (ITEC), pags. 1-6, 2019.

[9] A.T. Lemeski, R. Ebrahimi and A. Zakariazadeh,
"Optimal decentralized coordinated operation of electric
vehicle aggregators enabling vehicle to grid option using
distributed algorithm", Journal of Energy Storage, vol. 54,
pags. 105213, 2022.

[10] A. I. Aygun, A. Joshi and S. Kamalasadan, "An
Alternating Direction Method of Multipliers (ADMM)
Based Optimal Electric Vehicle Fleets Charging In Active
Electric Distribution Network", 2022 IEEE Global
Conference on Computing, Power and Communication
Technologies (GlobConPT), pags. 1-6, 2022.

[11] X. Zhou, S. Zou, P. Wang and Z. Ma, "ADMM-Based
Coordination of Electric Vehicles in Constrained
Distribution Networks Considering Fast Charging and
Degradation", - IEEE Transactions on Intelligent
Transportation Systems, vol. 22, pags. 565-578, 2021.

[12] A. Paudel, S.A. Hussain, R. Sadiq, H. Zareipour and
K. Hewage, "Decentralized cooperative approach for
electric vehicle charging", Journal of Cleaner Production,
vol. 364, pags. 132590, 2022.

[13] J. Soares, J. Almeida, L. Gomes, B. Canizes, Z. Vale
and E. Neto, "Electric vehicles local flexibility strategies
for congestion relief on distribution networks", Energy
Reports, vol. 8, pags. 62-69, 2022.

[14] J.A. Manzolli, J.P.F. Trovdo and C. Henggeler
Antunes, "Electric bus coordinated charging strategy
considering V2G and battery degradation", Energy, vol.
254, pags. 124252, 2022.

[15] A.M. Mohammed, S.N.H. Alalwan, A. Tascikaraoglu
and J.P.S. Cataldo, "Sliding mode-based control of an
electric vehicle fast charging station in a DC microgrid",
Sustainable Energy, Grids and Networks, vol. 32, pags.
100820, 2022.

[16] A.T. Al-Awami, E. Sortomme, G.M. Asim Akhtar
and S. Faddel, "A Voltage-Based Controller for an
Electric-Vehicle Charger", IEEE Transactions on
Vehicular Technology, vol. 65, pags. 4185-4196, 2016.

[171 A. Gonzalez-Garrido, M. Gonzalez-Pérez, F.J.
Asensio, A.F. Cortes-Borray, M. Santos-Mugica and I.
Vicente-Figueirido, "Hierarchical control for
collaborative electric vehicle charging to alleviate network
congestion and enhance EV hosting in constrained
distribution networks", Renewable Energy, vol. 230, pags.
120823, 2024.

Vehicle

[18] Fully-Charged, "Electric

EVdatabase-V4.5, 2024.

Database",



