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Abstract. The latest results of a research project pursuing an
energy-autonomous Structural Health Monitoring (SHM) system 
for wind farms are presented. The SHM system is based on the 
development of low-power IoT wireless nodes and 
electromagnetic harvesters to capture energy from low-frequency 
vibrations of wind towers. Computationally efficient operational 
modal analysis methods suited to the low-cost IoT edge nodes are 
also explored. The work carried out aims to extend the lifetime of 
existing wind farms by properly monitoring their structural 
integrity. 
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1. Introduction

A large part of Europe’s wind farms will come to the end 
of its designed lifetime within the next 10-15 years, 
especially in countries like Spain where this technology 
was deployed early. In order to fulfill Europe’s long-term 
decarbonization agenda, the share of wind energy in the 
energy mix needs to grow further, and this generation 
capacity will have to be maintained as much as possible. 
The war in Ukraine has also pushed energy security and 
sovereignty in the forefront, demanding increased local 
wind power generation. Hence lifetime extension of the 
wind farms is a strategic priority. Of the 22 GW power 
generated by wind farms reaching their economic end of 
life, WindEurope estimates that 17.8 GW will receive a 
lifetime extension [1]. However, the economic advantage 
of using already amortized wind turbines requires keeping 
the increase of maintenance cost moderate. In particular, 
global onshore wind operations and maintenance costs 
reached nearly $15 billion in 2019. Of that number, $8.5 
billion was spent on unplanned repairs and correctives 
caused by component failures [2]. In this regard, the IEC 
standard "IEC-61400-28 Through life management and life 
extension of wind farms" rates wind power SHM systems 
as essential for keeping maintenance costs low, managing 
assets more effectively throughout their lives, and 
estimating more accurately the potential for life extension. 

Guaranteeing the structural integrity of the wind turbines 
is a challenge, as they have become increasingly flexible 
structures, highly prone to damage due to resonance 
phenomena and rapid wear [3]. Wind turbines experience 
enormous and fluctuating mechanical loads, the most 
important of which are caused by the wind and by the 
nacelle and blades rotation. The guiding principle behind 
SHM is that a continuous tracking of the natural 
frequencies and damping coefficients of the structure 
makes it possible to predict the occurrence of potentially 
destructive phenomena. Nevertheless, based on the 
authors’ work with companies in the wind sector, we 
have identified that commercial wind turbine SHM 
solutions are often based on general approaches designed 
for use mainly in buildings, not very adequate for the 
application at hand [4]. Some limitations of current 
solutions are: 
• General purpose commercial equipment is usually

wired to the SCADA system of the wind turbine [5].
This solution lacks flexibility and scalability,
involving a complex installation and dependence on
the wind farm’s owner for the deployment.

• Current commercial equipment gets its electrical
supply from separate modules that are also sold by
the manufacturer, increasing cost.

• Commercial equipment can monitor the wind
turbine during operation but not in other critical
phases of the life cycle such as transport and
assembly, where parts are very prone to damage.

• Any intervention is usually so complex that it can
only be carried out during scheduled maintenance
periods.

A promising alternative for SHM of wind turbines is the 
use of wireless Internet of Things (IoT) technologies, 
which are revolutionizing other monitoring tasks [6, 7]. 
However, substantial research is still needed for efficient 
real-time IoT monitoring of wind turbine towers to 
reduce human intervention as much as possible. Some of 
the most critical challenges are adapting conventional 
SHM techniques to the specific requirements of wind 
farms [8] and making these IoT systems self-powered 
using energy harvesting techniques, in order to drastically 
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reduce maintenance costs and increase availability [9]. In 
addition, applying advanced data analysis and machine 
learning techniques to complement traditional signal 
analysis appears to be a promising possibility [10, 11, 12, 
13]. 
In this paper we present the main results of a research 
project funded by the Spanish Ministry of Science and 
Innovation and currently carried out by our research group 
and another group from the University of Seville (Spain). 
The project is aimed to addressing the issues mentioned in 
the previous section. In particular, our starting hypothesis 
is that an IoT SHM system specifically designed for wind 
farms with a wise combination of wireless technologies, 
sensors, IoT nodes capable of harvesting energy from the 
environment (if required) and specific signal processing 
and artificial intelligence techniques can overcome 
previous unsolved limitations.  
 
2. Proposed Approach 
 
In this section, the main results obtained in the project for 
the wireless IoT edge node, energy harvester and 
Operational Modal Analysis (OMA) methods are 
described. 
 
2.1. Design of IoT Nodes 
 
In order to fulfil the requirements of the application at 
hand, different wireless communication protocols can be 
considered, such as Bluetooh, Zigbee, LoraWAN, SigFox, 
NB-IoT or 4G/5G to name a few common ones [14, 15]. 
Bluetooth and Zigbee are attractive alternatives due to 
their low power consumption, but their limited coverage 
complicates monitoring of large wind farms. Both 
LoraWAN and NB-IoT are adequate for SHM of large 
infrastructures such as wind farms. LoraWAN provides 
large coverage with low power consumption, is cost-
effective and allows a flexible deployment particularly in 
rural areas. However, NB-IoT leverages the existing 
cellular infrastructure, providing lower latency, higher data 
rates and secure data transmission. For these reasons we 
chose NB-IoT as wireless transmission technology for the 
IoT nodes. 
Regarding the hardware design of the IoT edge nodes for 
SHM, a modular architecture was employed. A main 
printed circuit board was designed that controls the node 
and manages all the signal processing, storage, power 
management and communication tasks. An ARM Cortex-
M3 microcontroller from STMicroelectronics was chosen 
due to its versatility and low power consumption. The 
main board also includes a power-efficient NB-IoT 
transceiver from SIMCOM with power saving mode. 
Another auxiliary printed circuit board houses specific 
sensors for various monitoring needs (accelerometer, 
temperature, humidity, pressure, strain gauges, etc.) and 
can be easily customized to the particular SHM application 
of interest. In particular, for SHM of wind farms it 
includes the ADXL355 triaxial accelerometer from Analog 
Devices, which features low power consumption and 20-
bit resolution, corresponding to less than 4 µg resolution in 
acceleration.  This flexible architecture allows monitoring 

of diverse structures with simple modifications to the 
sensor board. The IoT node efficiently utilizes low-power 
modes in the microcontroller, NBIoT transceiver, and 
sensors, achieving over 10 years of autonomy [16] (see 
Figure 1).  
 
 
 

 
 
Figure 1. IoT node developed (a) Diagram (b) Photograph 
 
Furthermore, a control center has been developed, 
consisting of a set of microservices deployed for the 
reception, storage, processing, and presentation of 
information. The main microservices, deployed in 
Docker containers, include the non-relational database, 
the backend (node.js), the processing service (Python), 
and the frontend (VUE). 
 
2.2. Design of the Energy Harvester 
 
Energy autonomy of the IoT nodes monitoring the wind 
turbine is highly desirable as it avoids wired connection 
to the power supplied by the tower. This way, such 
autonomy simplifies the installation and maintenance of 
the nodes and allows placement of the sensors in moving 
parts of the turbine. Moreover, it enables monitoring 
during the assembly and transportation of the wind tower, 
which is often not possible with existing commercial 
solutions as mentioned earlier. 

In order to provide energy autonomy to the IoT nodes, 
some form of energy harvesting must be employed. 
There are several potential external energy sources that 
can be employed in wireless IoT nodes, such as solar, 
kinetic, thermal, electromagnetic and mechanical 
vibrations [17]. However, since the SHM IoT nodes are 
embedded within the wind tower structure, mechanical 
vibrations of the tower become usually the only feasible 
choice [9].  
There are several energy harvesters proposed in the 
literature to obtain electrical energy from mechanical 
vibrations, usually employing piezoelectric or 
electromagnetic transducers. However, most of 
conventional harvesters are not suitable for modern wind 
towers due to the very low frequency and amplitude of 
the vibrations experienced by the structure. These 
vibrations are often dominated by the first and second 
mechanical modes of the structure (typically about 0.35 
Hz and 1.5 Hz) and the harmonics of the rotation speed 
(typically at 0.25 Hz and 0.75 Hz) [9]. Concerning 
displacement of the nacelle in normal operation of on-
shore wind towers, it is typically restricted to ±10 cm, 
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leading to accelerations under 0.1g. Moreover, 
displacement of the wind tower is not only in the wind 
direction, thus requiring a multidirectional harvesting 
system. There are few ultra-low frequency vibration 
harvesters able to operate in this extreme scenario [9]. 
Considering these requirements, a multidirectional 
electromagnetic harvester prototype has been developed to 
supply the SHM IoT nodes of the wind towers. It is 
essentially a radial (non-rotating) moving structure with 
three masses of magnets that oscillate depending on the 
external excitation and adapt to movement in any direction 
within a plane. The developed prototype is shown in 
Figure 2, and details of the inner structure can be seen in 
the 3D image of Figure 3. The main physical dimensions 
of the device are shown in Table I. Each of the three 
moving masses includes an embedded array of magnets in 
Halbach configuration to optimize the outgoing magnetic 
field, and 24 coils are configured in the casing that collect 
the generated voltages. An advantage of this Halbach 
arrangement is that it produces repulsion between adjacent 
masses which attenuates mechanical impacts between 
them and helps to bring them to their steady state (120º 
apart) [9]. 
 
 

 
 
Fig. 2. Energy Harvester developed. 
 
 
 
 

 
 
 
Fig. 3. Detail of the moving masses with the Halbach arrays. 
 
 

Table I. - Physical dimensions of the electromagnetic harvester 
 

Dimension Value 
Diameter 100 mm 
Height 90 mm 
Single proof mass weight 158 g 
Moment of inertia 20.6 · 10−6kg mm2 
Weight 612 g 

 
2.3. System Identification Algorithms for IoT-Based SHM 
 
Structural Health Monitoring of wind turbines relies on 
identifying changes in the system response dynamics of 
the structure using Operational Modal Analysis (OMA) 
[18]. However, conventional OMA is often based on 
computationally intensive techniques such as Stochastic 
Subspace Identification (SSI) [19]. In an IoT SHM 
system operating in real-time, edge computing is required 
[20]. Edge computing refers to a new paradigm in which 
analysis and (pre)processing takes place on IoT edge 
nodes. Since such nodes have limited resources in terms 
of energy, cost and hardware complexity, it is a challenge 
to optimally distribute the processing between edge 
computing and the cloud. Hence, techniques to reduce the 
computational load in IoT edge nodes of OMA methods 
are required. Moreover, existing approaches for 
calculating the modal parameters (natural frequencies, 
damping, modal shapes) of the structure assume that the 
driving forces are the realization of a stochastic process 
which can be modelled as white noise. However, the 
mechanical loads caused by the rotating machinery of the 
wind turbine have a strong periodic character, reducing 
the sensitivity of the algorithms.  

In order to solve these issues, we have developed a novel 
approach to harmonic estimation and removal in wind 
turbines inspired by the techniques which appear in 
speech and audio signal synthesis and coding [21]. The 
starting point is to assume a model for the element to be 
identified, whether it is an isolated harmonic, a vibration 
mode, or the position (spin speed) corresponding to a 
non-stationary sinusoidal signal with variable amplitude 
and/or frequency. If the identification is carried out using 
a least squares process, a significant reduction in 
computational load and memory is achieved with respect 
to algorithms based on SSI. If it is also possible to use 
linear Kalman filtering, real-time operation is 
straightforward since it is a recursive procedure with 
minimum order. Both strategies have been applied 
alternatively to the aforementioned processes 
(identification and elimination of harmonics, extraction 
of modes) with very satisfactory results [22]. 
In order to reduce the complexity to calculate covariances 
matrices (whose dimensions make them unfeasible for 
real-time operation) of SSI-based OMA, the Random 
Decrement Technique (RDT) has been applied. Since 
RDT is based on averages, is therefore susceptible to 
real-time operation [22]. In summary, the combination of 
techniques that allow isolating and identifying modes and 
harmonics, and the subsequent application of RDT on 
them allows the basic parameters (frequency and 
damping) of a wind turbine to be calculated in real time. 
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3. Experimental Results 
 
At this stage of the research project the three main 
elements described of the IoT-Based Structural Health 
Monitoring System (IoT platform with the designed IoT 
nodes, electromagnetic energy harvesters and OMA 
algorithms) have been successfully developed and tested. 
The next step is system integration in a wind farm 
demonstrator. However, some preliminary results from a 
real scenario have been obtained. A wind turbine of 1.5W 
nominal power and 76 m height has been employed for the 
experiments. Fig. 4 shows the placement of the device in 
the nacelle of the wind tower. Actually, an improved 
version of the electromagnetic harvester of Fig. 2 was 
installed, using 4 freely-moving masses instead of 3 [23]. 
In order to capture the generated power and to transfer it to 
a supercapacitor for storage, the power converter shown in 
Fig. 5 was employed. It includes one independent self-
starting AC/DC boost converter per coil [24]. Moreover, 
another circuit was included to enforce discharge of the 
capacitor when a prescribed target voltage level is 
achieved, allowing to obtain an indirect measure of the 
average power generated through the charging time 
readings. Voltage at the supercapacitor is saved and 
downloaded in 10 min registers (standardized time slot in 
wind turbines), as well as data of acceleration two wind 
directions: (fore-aft) and its perpendicular (side-side). Wind 
speed and power generated by the turbine are also 
available to correlate power generated by the harvester 
with operating conditions. 
Fig. 6 shows some sample acceleration data obtained. The 
force-aft data have a period corresponding to the first 
mode of the wind turbine. The last part of the side-side 
acceleration also shows the periodicity of the 3P harmonic. 
These harmonics become clearer in the power spectra 
shown in Fig. 7. Displacement of tower tips spread over a 
band of around 2 Hz, with main peaks corresponding to 
the first structural mode of the tower (approximately 0.37 
Hz), together with a first harmonic of around 0.2Hz 
(1P=rotation speed) and a third harmonic at approximately 
0.85 Hz (3P, tower shadow effect). 

As expected, the amount of power generated by the 
harvester strongly depends on the wind speed which 
influence the vibrations of the nacelle and tower. Figure 8 
shows the supercapacitor voltage measured during a record 
of 10 minutes, showing 22 charge/discharge cycles. 
Measurement was carried out at nominal wind speed (11 to 
20 m/s). In these conditions the average power generated is 
low (around 20µW), mainly because the energy harvester 
was not specifically designed to this type of wind tower, 
which has very low vibration frequencies. Moreover, the 
power conversion efficiency of the circuit of Fig. 5 is low 
(less than 30%) due to the very simple circuit employed 
[24] and should be improved. 
 

 
 
Fig. 4. Test prototype in a wind turbine 
 

 
 
Fig. 5. Power converter of the harvester 
 

 
 
Fig. 6. Measurements of the acceleration at the nacelle: Fore-aft 
(up) and Side-side (down). 
 
 

 
 
Fig. 7. Tower acceleration spectra: Force-aft acceleration (left) 
and side-side acceleration (right) 
 
 

 
 
Fig. 8. 10-minute record of supercapacitor voltage. 
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4.  Conclusion 
 
The main hardware and software elements of an IoT 
platform aimed to provide SHM to wind farms have been 
described. Vibrational energy harvesting is exploited to 
provide autonomy to the wireless nodes. Advanced signal 
processing algorithms have been developed in order to 
alleviate the computational load of the IoT node. 
Optimization of the IoT node and power conversion unit of 
the harvester is still required to guarantee energy 
autonomy of the node. 
 
Acknowledgement 
 
Grant PID2022-138510OB-C21 funded by 
MCIN/AEI/10.13039/501100011033/FEDER, UE. 
 
References 
  
[1] End-of-Life Issues & Strategies Seminar, 18-20 Nov. 2020. 

https://windeurope.org/eolis2020/ 
[2] M. Tegtmeier, “Real-time wind turbine monitoring: Data 

challenges, and rewards”, Power Mag. (2020).  
[3] K. Jahani, R. G. Langlois, F. F. Afagh, “Structural dynamics 

of offshore wind turbines: A review”, Ocean Engineering 
(2022), vol. 251, p. 111136. 

[4] Pepperl and Fuchs - https://www.pepperl-
fuchs.com/spain/es/classid_6422.htm 

[5] Pch - https://www.pch-engineering.dk/410/wind-turbine-
protection 

[6] E. Folk, “How IoT is transforming the energy industry”, 
Renewable Energy Mag. (2019). 

[7] E. Hidalgo Fort, J.R. García Oya, F. Muñoz Chavero and R. 
G. Carvajal, “Intelligent containers based on a low-power 
sensor network and a non-invasive acquisition system for 
management and tracking of goods”, IEEE Trans. Intelligent 
Transportation Syst. (2018), vol. 19, no. 8, pp. 2734-2738. 

[8] M. Zivanovic, A. Plaza, X. Iriarte, A. Carlosena, 
“Instantaneous amplitude and phase signal modeling for 
harmonic removal in wind turbines”, Mech Syst Signal 
Process (2023), vol. 189, p. 110095. 

[9] C. Castellano-Aldave, A. Carlosena, X. Iriarte, A. Plaza, 
“Ultra-low frequency multidirectional harvester for wind 
turbines”, Applied Energy (2023), vol. 334, p. 120715. 

[10] V. Mugnaini, L. Zanotti, M. Civera, “A machine learning 
approach for automatic operational modal analysis”, Mech 
Syst Signal Process (2022), vol. 170, pp. 108813. 

[11] J.X. Leon-Medina et al, “Imbalanced multi-class 
classification of structural damage in a wind turbine 
foundation”, In: Rizzo, P., Milazzo, A. (eds) European 
Workshop on Structural Health Monitoring. EWSHM 2022. 
Lecture Notes in Civil Engineering, vol 270. 

[12] H. Hai Bin et al, “Anomaly identification of Structural 
Health Monitoring data using Dynamic Independent 
Component Analysis”, J. Computing in Civil Eng. (2020), 
vol. 34, p. 04020025. 

[13] S. Barber et al., “Development of a wireless, non-intrusive, 
MEMS-based pressure and acoustic measurement system for 
large-scale operating wind turbine blades”, Wind Energ. Sci. 
(2022), vol. 7, pp. 1383–1398. 

[14] D. Chew, “Protocols of the Wireless Internet of Things," in 
The Wireless Internet of Things: A Guide to the Lower 
Layers , IEEE (2019), pp. 21-45. 

[15] M. Mansour, A. Gamal, A.I. Ahmed, L.A. Said, A. Elbaz, N. 
Herencsar, A. Soltan, “Internet of Things: A Comprehensive 
Overview on Protocols, Architectures, Technologies, 

Simulation Tools, and Future Directions”. Energies (2023), 
vol. 16, p. 3465. 

[16] E. Hidalgo-Fort, P. Blanco-Carmona, F. Muñoz-Chavero, 
A. Torralba, R. Castro-Triguero, “Low-Cost, Low-Power 
Edge Computing System for Structural Health Monitoring 
in an IoT Framework”, Sensors (2024), vol. 24, p. 5078. 

[17] A. Harb, “Energy harvesting: State-of-the-art”, Renew 
Energy (2011), vol. 36, no. 10, pp. 2641-2654. 

[18] J. Pacheco-Chérrez, D. Cárdenas, A. Delgado-Gutiérrez, 
O. Probst, “Operational modal analysis for damage 
detection in a rotating wind turbine blade in the presence of 
measurement noise,” Composite Structures (2023), vol. 
321, p. 117298. 

[19] Zahid, F.B., Ong, Z.C., Khoo, S.Y., “A review of 
operational modal analysis techniques for in- service modal 
identification”, J. Braz. Soc. Mech. Sci. Eng. (2020), vol. 
42, p. 398. 

[20] P. Zhang, Z. He, C. Cui, C. Xu, L. Ren, “An edge-
computing framework for operational modal analysis of 
offshore wind-turbine tower,” Ocean Engineering (2023), 
Vol. 287, p. 115720. 

[21] M. Zivanovic, A. Plaza, X. Iriarte, and A. Carlosena, 
“Instantaneous amplitude and phase signal modeling for 
harmonic removal in wind turbines,” Mech Syst Signal 
Process (2023), vol. 189, p. 110095. 

[22] I. Vilella, M. Zivanovic, G. Gainza, A. Plaza, X. Iriarte, A. 
Carlosena, “Real-Time Estimation of Damping in Wind 
Turbines”, Latin American Workshop on Structural Health 
Monitoring (LATAM-SHM2023) 

[23] C. Castellano-Aldave, A. Plaza, X. Iriarte, A. Carlosena, 
“Low-frequency electromagnetic harvester for wind turbine 
vibrations”, Micro and Nano Engineering (2024), vol. 25, p. 
100287. 

[24] J.C. Castellano-Aldave, C.A. De La Cruz-Blas, A. 
Carlosena, “A novel ultra-low input voltage and frequency 
self astarting AC-DC boost converter for micro energy 
harvesting”, IEEE Sensors Letters (2024), 8(5), 1-4. 

62


	4.  Conclusion

