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Abstract. The latest results of a research project pursuing an
energy-autonomous Structural Health Monitoring (SHM) system
for wind farms are presented. The SHM system is based on the
development of low-power IoT wireless nodes and
electromagnetic harvesters to capture energy from low-frequency
vibrations of wind towers. Computationally efficient operational
modal analysis methods suited to the low-cost IoT edge nodes are
also explored. The work carried out aims to extend the lifetime of
existing wind farms by properly monitoring their structural
integrity.
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1. Introduction

A large part of Europe’s wind farms will come to the end
of its designed lifetime within the next 10-15 years,
especially in countries like Spain where this technology
was deployed early. In order to fulfill Europe’s long-term
decarbonization agenda, the share of wind energy in the
energy mix needs to grow further, and this generation
capacity will have to be maintained as much as possible.
The war in Ukraine has also pushed energy security and
sovereignty in the forefront, demanding increased local
wind power generation. Hence lifetime extension of the
wind farms is a strategic priority. Of the 22 GW power
generated by wind farms reaching their economic end of
life, WindEurope estimates that 17.8 GW will receive a
lifetime extension [1]. However, the economic advantage
of using already amortized wind turbines requires keeping
the increase of maintenance cost moderate. In particular,
global onshore wind operations and maintenance costs
reached nearly $15 billion in 2019. Of that number, $8.5
billion was spent on unplanned repairs and correctives
caused by component failures [2]. In this regard, the IEC
standard "IEC-61400-28 Through life management and life
extension of wind farms" rates wind power SHM systems
as essential for keeping maintenance costs low, managing
assets more effectively throughout their lives, and
estimating more accurately the potential for life extension.

58

Guaranteeing the structural integrity of the wind turbines
is a challenge, as they have become increasingly flexible
structures, highly prone to damage due to resonance
phenomena and rapid wear [3]. Wind turbines experience
enormous and fluctuating mechanical loads, the most
important of which are caused by the wind and by the
nacelle and blades rotation. The guiding principle behind
SHM is that a continuous tracking of the natural
frequencies and damping coefficients of the structure
makes it possible to predict the occurrence of potentially
destructive phenomena. Nevertheless, based on the
authors’ work with companies in the wind sector, we
have identified that commercial wind turbine SHM
solutions are often based on general approaches designed
for use mainly in buildings, not very adequate for the
application at hand [4]. Some limitations of current
solutions are:
. General purpose commercial equipment is usually
wired to the SCADA system of the wind turbine [5].
This solution lacks flexibility and scalability,
involving a complex installation and dependence on
the wind farm’s owner for the deployment.

. Current commercial equipment gets its electrical
supply from separate modules that are also sold by
the manufacturer, increasing cost.

. Commercial equipment can monitor the wind
turbine during operation but not in other critical
phases of the life cycle such as transport and
assembly, where parts are very prone to damage.

. Any intervention is usually so complex that it can
only be carried out during scheduled maintenance
periods.

A promising alternative for SHM of wind turbines is the
use of wireless Internet of Things (IoT) technologies,
which are revolutionizing other monitoring tasks [6, 7].
However, substantial research is still needed for efficient
real-time IoT monitoring of wind turbine towers to
reduce human intervention as much as possible. Some of
the most critical challenges are adapting conventional
SHM techniques to the specific requirements of wind
farms [8] and making these IoT systems self-powered
using energy harvesting techniques, in order to drastically



reduce maintenance costs and increase availability [9]. In
addition, applying advanced data analysis and machine
learning techniques to complement traditional signal
analysis appears to be a promising possibility [10, 11, 12,
13].

In this paper we present the main results of a research
project funded by the Spanish Ministry of Science and
Innovation and currently carried out by our research group
and another group from the University of Seville (Spain).
The project is aimed to addressing the issues mentioned in
the previous section. In particular, our starting hypothesis
is that an IoT SHM system specifically designed for wind
farms with a wise combination of wireless technologies,
sensors, loT nodes capable of harvesting energy from the
environment (if required) and specific signal processing
and artificial intelligence techniques can overcome
previous unsolved limitations.

2. Proposed Approach

In this section, the main results obtained in the project for
the wireless IoT edge node, energy harvester and
Operational Modal Analysis (OMA) methods are
described.

2.1. Design of IoT Nodes

In order to fulfil the requirements of the application at
hand, different wireless communication protocols can be
considered, such as Bluetooh, Zigbee, LoraW AN, SigFox,
NB-IoT or 4G/5G to name a few common ones [14, 15].
Bluetooth and Zigbee are attractive alternatives due to
their low power consumption, but their limited coverage
complicates monitoring of large wind farms. Both
LoraWAN and NB-IoT are adequate for SHM of large
infrastructures such as wind farms. LoraWAN provides
large coverage with low power consumption, is cost-
effective and allows a flexible deployment particularly in
rural areas. However, NB-IoT leverages the existing
cellular infrastructure, providing lower latency, higher data
rates and secure data transmission. For these reasons we
chose NB-IoT as wireless transmission technology for the
IoT nodes.

Regarding the hardware design of the IoT edge nodes for
SHM, a modular architecture was employed. A main
printed circuit board was designed that controls the node
and manages all the signal processing, storage, power
management and communication tasks. An ARM Cortex-
M3 microcontroller from STMicroelectronics was chosen
due to its versatility and low power consumption. The
main board also includes a power-efficient NB-IoT
transceiver from SIMCOM with power saving mode.

Another auxiliary printed circuit board houses specific
sensors for various monitoring needs (accelerometer,
temperature, humidity, pressure, strain gauges, etc.) and
can be easily customized to the particular SHM application
of interest. In particular, for SHM of wind farms it
includes the ADXL355 triaxial accelerometer from Analog
Devices, which features low power consumption and 20-
bit resolution, corresponding to less than 4 pg resolution in
acceleration. This flexible architecture allows monitoring
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of diverse structures with simple modifications to the
sensor board. The IoT node efficiently utilizes low-power
modes in the microcontroller, NBIoT transceiver, and
sensors, achieving over 10 years of autonomy [16] (see
Figure 1).

(2)

(b)
Figure 1. IoT node developed (a) Diagram (b) Photograph

Furthermore, a control center has been developed,
consisting of a set of microservices deployed for the
reception, storage, processing, and presentation of
information. The main microservices, deployed in
Docker containers, include the non-relational database,
the backend (node.js), the processing service (Python),
and the frontend (VUE).

2.2. Design of the Energy Harvester

Energy autonomy of the IoT nodes monitoring the wind
turbine is highly desirable as it avoids wired connection
to the power supplied by the tower. This way, such
autonomy simplifies the installation and maintenance of
the nodes and allows placement of the sensors in moving
parts of the turbine. Moreover, it enables monitoring
during the assembly and transportation of the wind tower,
which is often not possible with existing commercial
solutions as mentioned earlier.

In order to provide energy autonomy to the IoT nodes,
some form of energy harvesting must be employed.
There are several potential external energy sources that
can be employed in wireless IoT nodes, such as solar,
kinetic, thermal, electromagnetic and mechanical
vibrations [17]. However, since the SHM IoT nodes are
embedded within the wind tower structure, mechanical
vibrations of the tower become usually the only feasible
choice [9].

There are several energy harvesters proposed in the
literature to obtain electrical energy from mechanical
vibrations, usually employing piezoelectric  or
electromagnetic  transducers. However, most of
conventional harvesters are not suitable for modern wind
towers due to the very low frequency and amplitude of
the vibrations experienced by the structure. These
vibrations are often dominated by the first and second
mechanical modes of the structure (typically about 0.35
Hz and 1.5 Hz) and the harmonics of the rotation speed
(typically at 0.25 Hz and 0.75 Hz) [9]. Concerning
displacement of the nacelle in normal operation of on-
shore wind towers, it is typically restricted to £10 cm,



leading to accelerations wunder 0.1g. Moreover,
displacement of the wind tower is not only in the wind
direction, thus requiring a multidirectional harvesting
system. There are few ultra-low frequency vibration
harvesters able to operate in this extreme scenario [9].

Considering these requirements, a multidirectional
electromagnetic harvester prototype has been developed to
supply the SHM IoT nodes of the wind towers. It is
essentially a radial (non-rotating) moving structure with
three masses of magnets that oscillate depending on the
external excitation and adapt to movement in any direction
within a plane. The developed prototype is shown in
Figure 2, and details of the inner structure can be seen in
the 3D image of Figure 3. The main physical dimensions
of the device are shown in Table 1. Each of the three
moving masses includes an embedded array of magnets in
Halbach configuration to optimize the outgoing magnetic
field, and 24 coils are configured in the casing that collect
the generated voltages. An advantage of this Halbach
arrangement is that it produces repulsion between adjacent
masses which attenuates mechanical impacts between
them and helps to bring them to their steady state (120°
apart) [9].

Fig. 2. Energy Harvester developed.

Fig. 3. Detail of the moving masses with the Halbach arrays.
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Table I. - Physical dimensions of the electromagnetic harvester

Dimension Value

Diameter 100 mm

Height 90 mm

Single proof mass weight 158 g

Moment of inertia 20.6 - 10 %kg mm?
Weight 612 ¢g

2.3. System Identification Algorithms for loT-Based SHM

Structural Health Monitoring of wind turbines relies on
identifying changes in the system response dynamics of
the structure using Operational Modal Analysis (OMA)
[18]. However, conventional OMA is often based on
computationally intensive techniques such as Stochastic
Subspace Identification (SSI) [19]. In an IoT SHM
system operating in real-time, edge computing is required
[20]. Edge computing refers to a new paradigm in which
analysis and (pre)processing takes place on IoT edge
nodes. Since such nodes have limited resources in terms
of energy, cost and hardware complexity, it is a challenge
to optimally distribute the processing between edge
computing and the cloud. Hence, techniques to reduce the
computational load in IoT edge nodes of OMA methods
are required. Moreover, existing approaches for
calculating the modal parameters (natural frequencies,
damping, modal shapes) of the structure assume that the
driving forces are the realization of a stochastic process
which can be modelled as white noise. However, the
mechanical loads caused by the rotating machinery of the
wind turbine have a strong periodic character, reducing
the sensitivity of the algorithms.

In order to solve these issues, we have developed a novel
approach to harmonic estimation and removal in wind
turbines inspired by the techniques which appear in
speech and audio signal synthesis and coding [21]. The
starting point is to assume a model for the element to be
identified, whether it is an isolated harmonic, a vibration
mode, or the position (spin speed) corresponding to a
non-stationary sinusoidal signal with variable amplitude
and/or frequency. If the identification is carried out using
a least squares process, a significant reduction in
computational load and memory is achieved with respect
to algorithms based on SSI. If it is also possible to use
linear Kalman filtering, real-time operation is
straightforward since it is a recursive procedure with
minimum order. Both strategies have been applied
alternatively to  the aforementioned processes
(identification and elimination of harmonics, extraction
of modes) with very satisfactory results [22].

In order to reduce the complexity to calculate covariances
matrices (whose dimensions make them unfeasible for
real-time operation) of SSI-based OMA, the Random
Decrement Technique (RDT) has been applied. Since
RDT is based on averages, is therefore susceptible to
real-time operation [22]. In summary, the combination of
techniques that allow isolating and identifying modes and
harmonics, and the subsequent application of RDT on
them allows the basic parameters (frequency and
damping) of a wind turbine to be calculated in real time.



3. Experimental Results

At this stage of the research project the three main
elements described of the IoT-Based Structural Health
Monitoring System (IoT platform with the designed IoT
nodes, electromagnetic energy harvesters and OMA
algorithms) have been successfully developed and tested.
The next step is system integration in a wind farm
demonstrator. However, some preliminary results from a
real scenario have been obtained. A wind turbine of 1.5W
nominal power and 76 m height has been employed for the
experiments. Fig. 4 shows the placement of the device in
the nacelle of the wind tower. Actually, an improved
version of the electromagnetic harvester of Fig. 2 was
installed, using 4 freely-moving masses instead of 3 [23].
In order to capture the generated power and to transfer it to
a supercapacitor for storage, the power converter shown in
Fig. 5 was employed. It includes one independent self-
starting AC/DC boost converter per coil [24]. Moreover,
another circuit was included to enforce discharge of the
capacitor when a prescribed target voltage level is
achieved, allowing to obtain an indirect measure of the
average power generated through the charging time
readings. Voltage at the supercapacitor is saved and
downloaded in 10 min registers (standardized time slot in
wind turbines), as well as data of acceleration two wind
directions: (fore-aft) and its perpendicular (side-side). Wind
speed and power generated by the turbine are also
available to correlate power generated by the harvester
with operating conditions.

Fig. 6 shows some sample acceleration data obtained. The
force-aft data have a period corresponding to the first
mode of the wind turbine. The last part of the side-side
acceleration also shows the periodicity of the 3P harmonic.
These harmonics become clearer in the power spectra
shown in Fig. 7. Displacement of tower tips spread over a
band of around 2 Hz, with main peaks corresponding to
the first structural mode of the tower (approximately 0.37
Hz), together with a first harmonic of around 0.2Hz
(1P=rotation speed) and a third harmonic at approximately
0.85 Hz (3P, tower shadow effect).

As expected, the amount of power generated by the
harvester strongly depends on the wind speed which
influence the vibrations of the nacelle and tower. Figure 8
shows the supercapacitor voltage measured during a record
of 10 minutes, showing 22 charge/discharge cycles.
Measurement was carried out at nominal wind speed (11 to
20 m/s). In these conditions the average power generated is
low (around 20uW), mainly because the energy harvester
was not specifically designed to this type of wind tower,
which has very low vibration frequencies. Moreover, the
power conversion efficiency of the circuit of Fig. 5 is low
(less than 30%) due to the very simple circuit employed
[24] and should be improved.
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Fig. 5. Power converter of the harvester
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Fig. 6. Measurements of the acceleration at the nacelle: Fore-aft
(up) and Side-side (down).
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Fig. 8. 10-minute record of supercapacitor voltage.



4. Conclusion

The main hardware and software elements of an IoT
platform aimed to provide SHM to wind farms have been
described. Vibrational energy harvesting is exploited to
provide autonomy to the wireless nodes. Advanced signal
processing algorithms have been developed in order to
alleviate the computational load of the IoT node.
Optimization of the [oT node and power conversion unit of
the harvester is still required to guarantee energy
autonomy of the node.
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