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Abstract. sub-synchronous oscillations pose a significant
challenge in modern power systems, particularly in networks with
high penetration of power electronic converters. While phasor
measurement units (PMUs) are generally used for grid monitoring,
their ability to detect sub-synchronous oscillations is being
challenged. This paper discusses PMU limitations in measuring
sub-synchronous oscillations, introducing a novel algorithm to
detect their occurrence by leveraging PMU phasor data and rate-
of-change-of-frequency analysis to trigger high-resolution voltage
waveform recordings. This approach enables direct comparison
between PMU-reported events and raw waveform data, which
paves the way to analysing discrepancies and limitations in PMU-
based detection.

Key words. Measurement techniques, power grids,
phasor measurement units, oscillations, power quality.

1. Introduction

As nations accelerate efforts to reach net-zero carbon
emissions, the energy sector is undergoing profound
technological change, primarily driven by the rapid
electrification of various sectors. Renewable energy sources
such as wind and solar are replacing traditional fossil fuel-
based power generation at an unprecedented pace, while
sectors like transportation, heating, and industrial processes
are shifting toward electricity as their primary energy
source. At the same time power grids are adapting to
accommodate these changes, by integrating a growing
number of distributed energy resources, managing
bidirectional energy flows and energy storage systems.

One of the most significant trends shaping modern power
systems is the increasing reliance on power converters —
advanced electronic devices that enable the connection of
renewable energy sources and new types of electrical loads,
such as electric vehicle charging stations, to the grid. The
shift toward inverter-based resources (IBRs) and, more in
general, grids dominated by power converters, introduces
new complex electrical disturbances that can impact
electromagnetic compatibility and power quality. A
particularly ~ concerning issue is  sub-synchronous
oscillations (SSOs), which results from interactions
between power converters and can lead to instability,

110

potentially threatening the overall reliability and security
of power systems [1].

This paper discusses the issue of detecting SSOs in power
systems and some of the measurement aspects related to
this challenge, emphasising on the requirements for their
accurate detection, presenting a trigger mechanism for the
early detection of SSOs from existing measurement
instrumentation, and limitations to measurement strategies
based on phasor measurement units (PMUSs).

2. Sub-synchronous oscillations

A. Description of the phenomenon

SSOs are a type of electrical instability which occurs in
power systems when components interact at frequencies
below the system’s nominal frequency, typically 50 Hz or
60 Hz. These oscillations arise from the dynamic
interactions between generators, transmission lines, and
power electronics, particularly in systems with high levels
of renewable energy and power converters. SSOs can be
classified in three main types, torsional interactions,
electrical interactions and power electronic interactions.
Torsional and electrical interactions are mostly related to
resonances in the grid and to synchronous resources and
electro-mechanical ~ machines.  Power  electronic
interactions occur between IBRs, flexible AC transmission
systems, and power converter controls [2]. While
traditionally the main concerns have been around
electrical and torsional interactions, with the increasing
integration of power converters in modern grids,
converter-driven SSOs have become a growing concern,
as they can negatively interact with resonances that
amplify oscillations, potentially leading to instability.
These oscillations can cause excessive stress on power
system components, leading to equipment damage, grid
disruptions, or even large-scale blackouts if not properly
mitigated [16].

Recent cases of SSOs have been reported in the literature,
primarily in power systems with a significant presence of
IBRs (and at the same time advanced monitoring
capabilities). This includes regions such as Texas (USA),
China, Australia and Great Britain. The study presented



in [3] provides a comprehensive overview of various
real-world SSO incidents that have emerged in recent years
within power networks heavily reliant on power-electronic
technologies.

Since electrical and torsional SSOs started appearing before
the introduction of power electronics in power systems,
most of the standards and practices were developed without
considering the presence of converters in the grid. However,
as power systems transition towards a higher share of
renewables and electronic-based components, detecting and
mitigating SSOs requires new strategies and new
standardised methods of analysis systems [1].

B. Importance of measurement

Mitigating the risk of SSOs involves two key aspects. The
first is operational management, where grid operators are
increasingly recognising the need for high-quality
situational awareness and robust monitoring capabilities,
both of which depend on a reliable measurement
infrastructure. Effective real-time monitoring plays a
crucial role in detecting and assessing SSOs, helping
operators respond swiftly to potential threats. The second
aspect relates to system planning. Operators are placing
greater emphasis on developing advanced modelling
techniques, with electromagnetic transient (EMT) models
gaining traction due to their superior accuracy in capturing
complex phenomena such as SSOs and control interactions.
However, as models becomes more sophisticated, they
require greater validation using accurate real-world
measurement data. It is only when the model has been
validated that it can be used to inform critical decision
making in a reliable manner. Furthermore, given that SSOs
can lead to grid instability, both early detection and
predictive capabilities can provide valuable foresight for
system operators, enabling proactive interventions.

Finally, a thorough characterisation of SSOs holds
significant value for post-mortem analysis, such as in cases
where grid disturbances have led to major system failures
or incidents that can generate disturbances in power
systems, including catastrophic events like the one reported
in [4].

3. Literature review of detection methods

A grid measurement infrastructure should integrate
instrumentation and data processing techniques capable of
promptly identifying the onset of SSOs and effectively
characterising their dynamic behaviour. Traditional
SCADA systems, which are widely deployed for power
system monitoring, are inherently limited by their
timescales, making them unsuitable for detecting SSOs,
which occur at sub-second timescales. In contrast, PMUs
have gained prominence due to their ability to perform
high-resolution, time-synchronised measurements, which
provide the ability to see how power systems are operating
over a wide area. Consequently, PMUs —being the only
wide area monitoring tool installed— are being used to detect
SSOs, with many system operators viewing them as a viable
solution. However, PMUs present inherent limitations, as it
was shown in [5]. Their hardware and associated algorithms
are optimised to analyse the power line frequency only (i.e.
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50 Hz or 60 Hz), intentionally rejecting spectral content
far away from the fundamental. Additionally, the reporting
rates of PMUs are constrained, limiting their ability to
capture high-frequency oscillatory modes with sufficient
precision. The studies in [6] [7] show examples of a
misleading identification of an SSO frequency and of an
interaction of two distinct modes generating undetected
aliasing because of the PMU limitations. Finally, it must
be noted that fault recorders can provide high-resolution
data for capturing SSOs more accurately. However, these
devices require significant computational resources and
are typically not designed for real-time analysis, making
them unsuitable for online SSO detection.

C. Current practices

A significant portion of the literature relies on PMU data
for SSO analysis, including operational incident reports
from the National Energy System Operator (NESO) in the
UK [2] and the Australian Energy Market Operator
(AEMO) [8]. Recent detection methods see the use of a
wide-area measurement system (WAMS) that measures
the variations in the synchro-phasors measured by PMUs
using a discrete Fourier transform (DFT). This has been
used to detect SSOs in [9], where the GPS-synchronised
timestamps allow for analysis on the development and
propagation of SSOs[9]. The measurement of
syncro-phasors has been further refined in [10], with the
use of Hann filter interpolation, combined with DFT
analysis, with the objective of reducing spectrum leakage
and achieving higher accuracy in SSO parameter
identification, especially the amplitude. This however
increases the necessary time window to detect an SSO to
10 s reducing its suitability as an online SSO detection
method [10]. An alternative currently being explored are
machine learning detection methods such as the one
proposed in [11]. However, the low number of recorded
and measured SSOs leads to most of a model’s training to
be conducted where a large proportion of the training data
is without SSOs or on the benchmark simulations defined
in [12]. To mitigate this effect, a transfer learning
algorithm was suggested in [13]. Due to the limitations in
the measurements of real SSO events discussed further
below, incorrect parameters limit the applicability of
transfer learning algorithms and lead to the proposal of a
model free method in [13]. Overall, the lack of an accurate
real time detection and measurement method for SSOs
creates a risk for the further implementation of more
renewable energy sources, with the AEMO stating, “weak
grid associated stability challenges are viewed as the most
significant challenges to higher IBR penetrations” [3].

4. Limitations in Measurements of SSOs

PMUs have been proven able to detect SSOs to a certain
extent. However, some of their inherent limitations might
raise concerns, especially when it comes to characterise
SSOs [6]. Two of their largest limitations are their
relatively low reporting rates and their onboard filters.

A. Reporting rates
Table | shows the reporting rates in frames-per-second of
IEEE-compliant PMUs for different system frequencies,



with only some going as high as 100 fps (or 120 fps), but
with most already-deployed PMUs reporting at 50 fps
(60 fps).

Table I. - Standard PMU reporting rates [14].

System freq. (Hz) 50 Hz 60 Hz

100{10|12{15|20|30|60(120

Report. rates (fps) | 10|25 |50

Due to the Nyquist theorem, frequency oscillatory modes
can only be captured up to half of the reporting rate i.e., up
to 25 Hz in most cases. Therefore, only a proportion of
PMUs can observe oscillations up to the synchronous
frequency posing questions to their suitability to detect and
characterise SSO events. This can also lead to large aliasing
effects that when measured have returned incorrect SSO
characteristics [6]. Additionally, as highlighted in [10]
many PMUs algorithms rely on a fixed frequency and
window length to calculate the synchro-phasors. As a result,
measuring a non-integer number of power cycles will cause
spectral leakage, leading which has been shown to lead
inaccuracies in SSO characteristics measured.

B. Filtering

To comply with the IEC/IEEE 60255-118-1 standard,
PMUs are required to feature analogue and digital filters to
reduce the effect of aliasing of the PMU measurement [14].
For M class, PMUs digital filters must be contained within
the unshaded region shown in Figure 1.
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Figure 1. Filter mask that all M class PMU digital filters must
be compliant with [14].

The filter mask shows that the current standards allow for
variety of attenuation responses between frequencies of
Fs/5 and 50 Hz in the anti-aliasing filters. This means the
measured characteristics of the SSOs will differ dependent
on the filtering strategy of each PMU algorithms used.

Given that the filtering strategies and frequency response of
PMU algorithms is often unknown, the following work
details an experimental analysis into the frequency response
characteristics of various PMU algorithms. The objective is
to evaluate the algorithms' performance in accurately
capturing and processing SSO signals, specifically focusing
on the out-of-band signal rejection i.e., the attenuation that
the filtering stages introduce to frequencies outside the
nominal system frequency. To achieve this, artificial
waveforms y; containing a known single-tone sinusoidal
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SSO superposed to a 50 Hz signal were generated
according to:

y; = Acos(2nfyt) + 0.1 A cos(2mfssot) ¢9)

Where t represents the time, the first term is an ideal
fundamental signal at f;, = 50 Hz and amplitude A, and the
second term is the superposed SSO with frequency fsso.
Note that the amplitude of the SSO is 10 % of the
fundamental signal. Waveforms y; were used as input to
six different PMU algorithms and the outputs were
analysed. By varying fsso from 1 Hz to 65 Hz, a frequency
sweep was performed, providing a characterisation of the
frequency response of the algorithms.
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Figure 2. Frequency response of six different PMU algorithms
to a frequency sweep of single-tone SSOs.

Figure 2 shows the measured output amplitude of the SSO
tone, at varying values of frequency. It can be seen that all
the tested algorithms aim at providing an unattenuated
response when the tone is very close to the nominal system
frequency at 50 Hz. However, as the SSO frequency
moves away from the 50 Hz the amplitude gets attenuated,
in some cases very abruptly (e.g. algorithms B and C). It
must be noted that the algorithms with the most aggressive
attenuation tend to provide better results in estimating the
systems frequency, especially under distorted grid
conditions. This is a design choice to improve PMU
estimations at 50 Hz. The results therefore reveal a distinct
trade-off: algorithms with better accuracy frequency
estimation exhibit superior out-of-band rejection, and a
higher suppression of the SSO components. This analysis
suggests that conventional PMUs are not optimised for
SSO measurement, necessitating careful interpretation of
PMU-derived SSO data.

The limitations discussed above will return inaccuracies in
the SSO characteristics measured which are crucial in
effective SSO mitigation strategies. This in turn could lead
to preventable economic and physical damage to the grid.
It also raises a question of whether some SSO events
would be potentially overlooked due to high attenuation in
the sub synchronous frequency range.

5. Detection algorithm for SSOs

A comparative measurement approach can provide an
effective way to evaluate practical limitations of SSO
detection using PMUs. This involves the simultaneous and
synchronised recording of SSOs at a single location using



both a PMU and an advanced waveform recorder, used as a
reference. A custom-designed instrument capable of high
sampling-rate voltage and current waveform digitization, as
well as real-time PMU calculations via onboard algorithms,
allows for parallel computations from a single acquisition.
However, given the unpredictable nature of SSOs,
continuous high-speed waveform recording is impractical
due to the resulting large data volume. Therefore, it is
necessary to be able to detect when a SSO is happening to
trigger the recording of samples. This mechanism enables
continuous PMU phasor and frequency calculations, with
the capture of both phasor data and raw voltage waveforms
upon SSO detection. This section details the development
of an SSO detector based on PMU frequency
measurements.

A. Detector description

As discussed in Section 3, SSOs can and are typically
observed as oscillations in PMU frequency measurements.
This can be seen in Figure 3 which shows an SSO observed
in frequency data measured with a PMU in Australia and
obtained from [15].
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Figure 3. System frequency measured by a PMU during an

SSO (top) taken from [15] and calculated ROCOF with
corresponding envelope (bottom).

The figure also shows the calculated rate-of-change-of-
frequency (ROCOF) which, being the derivative of
frequency, exhibits a near-zero baseline under stable
frequency conditions. However, the onset of an SSO
induces rapid fluctuations in ROCOF's absolute value,
making it a sensitive indicator for SSO detection.
Consequently, an SSO can be detected when the ROCOF
surpasses a predefined threshold for a sustained duration.
The initial step in the detection process involves the
calculation of the ROCOF at time n, R, defined by:
fn - fn—l

R, =—"—>"=

(2
T

Where f,, is the frequency value at time n, and T is the time
resolution i.e. the inverse of the PMU reporting rate,
typically 50 fps or 100 fps, corresponding to 20 ms or
10 ms, respectively. Subsequently, the envelope of the
ROCOEF signal is determined. Given the oscillatory nature
of SSOs, the positive and negative envelope amplitudes are
expected to be symmetrical. Therefore, the detection
algorithm considers only the positive envelope. The
envelope is derived by applying non-overlapping,
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contiguous windows of 25 ROCOF readings, equivalent to
500 ms at a 50 fps reporting rate. Within each window, the
maximum ROCOF value defines the envelope point,
resulting in an envelope with a 500 ms time step. This
envelope facilitates the threshold-based SSO detection.
Upon exceeding the threshold, a potential SSO event is
flagged, and a counter tracks the number of consecutive
samples exceeding the threshold. If a minimum duration
criterion is met, the instrument is triggered to store raw
voltage waveforms. Otherwise, the event is classified as
noise, and the waveforms are discarded. The minimum
duration is specified as a predefined number of samples,
e.g., 5 samples corresponding to 2.5 seconds. The storage
protocol captures 5 seconds of pre-event waveforms, the
entire  SSO duration, and an additional 5 seconds
post-event. Figure 4 provides a detailed view of the
ROCOF envelope and the detection threshold, with the
green line indicating the identified SSO event.
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Figure 4. Detail of the ROCOF envelope from the event in
Figure 3, with the selected threshold and the control signal
identifying the SSO event.

B. Choice of detector parameters

The detector's performance is governed by two
parameters: the ROCOF envelope threshold (in Hz/s) and
the minimum event duration (in samples) required for SSO
classification. The parameter selection is critical to
minimise false triggers while avoiding missing events.
Optimal parameter values are ultimately application
dependant and influenced by the objective of the detection
(e.g. post-mortem studies or early warning) as well as by
grid conditions. In this work, to determine suitable
parameters, a database of 184 PMU-recorded SSO events
was utilized, comprising measurements from system
operators in GB and publicly available data from [15]. Due
to the diverse recording locations, the dataset includes few
files with no evidence of the SSO events. The optimization
of the parameters employed two criteria. False negatives
i.e., instances where an SSO is not detected in a file
containing an SSO, were minimized. False positives i.e.,
instances where multiple SSOs are detected in a single file,
were also minimized. By cross-referencing these two
indicators, optimal parameter values were determined.
Figure 5 illustrates heatmaps depicting the optimization
results. The heatmaps present the detection performance
across a range of threshold values and minimum event
durations.
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Figure 5. Heatmaps illustrating the number of false positive (a)
and false negative (b) detections of SSOs, in counts.

The heatmaps in Figure 5 (a) and (b) exhibit opposing
trends, indicating an optimal parameter region within a
threshold range of 0.3 Hz/s to 0.6 Hz/s and a minimum
duration range of 8 to 13 samples. Based on these results,
the following parameters were selected:

e Threshold = 0.5 Hz/s

e  Minimum duration = 10 samples, corresponding to 5 s

The detection algorithm has been tested for its functionality
on examples of SSOs, artificially created as well as
measured on the grid. Examples of results are presented in
the remaining of this section. Figure 6 and Figure 7 show
the examples of the application of the detection algorithm
to two synthetic SSOs. In both cases, a 20 Hz oscillation is
superposed to a pure 50 Hz signal starting and finishing at
defined instants in time, the first one (Figure 6) with a
rectangular modulation and the second one (Figure 7) with
a gaussian modulation. The synthetic test waveforms have
then been processed by a PMU emulator with a reporting
rate of 100 fps, and then analysed with the detection
algorithm. It is possible to observe how, in the case of the
gaussian modulation, the PMU algorithm produces a
frequency measurement with a complex pattern. All
synthetic tests are purely for the purpose of validation as the
frequency oscillations are artificially large, generating
significantly high ROCOF values with in particular Figure
7 showing frequency variations almost outside of statutory
limits. Figure 8 and Figure 9, instead, are two examples of
real instances of SSOs measured with PMUs in Australia
and taken from [15], where it is again possible to see that
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Figure 6. Top: frequency calculated by a PMU during a
synthetic SSO localised in time, with 2 % amplitude and a
rectangular modulation. Bottom: ROCOF and envelope.
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Figure 7. Top: frequency calculated by a PMU during a
synthetic SSO localised in time, with 10 % amplitude and a
gaussian modulation. Bottom: ROCOF and envelope.
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the ROCOF envelope is effectively obtained, and the event
trespasses the threshold, identifying the onset of the SSO.
In summary, the application of the detection algorithm to
both artificially generated and real-world SSO events, as

demonstrated in Figure 6 through Figure 9, confirms the
practical applicability of the proposed detection algorithm
for detecting the occurrence of sub-synchronous
oscillations in power systems using PMU data. This can
therefore pave the way to the acquisition of more valuable
SSO data from PMUs, in parallel with high-resolution
voltage waveforms that can serve to fully identify the
limitations of PMUs in SSO detection and at the same time
provide a better characterisation of this phenomenon.
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6. Conclusions and future work

While the need for enhanced SSO monitoring in power
systems is clear, system operators currently rely
predominantly on existing PMUs for SSO measurement.
After analysing the limitations of conventional PMU-based
SSO measurement, this paper proposes an SSO event-
triggering algorithm, based on the detection of frequency
modulation and oscillatory behaviour of ROCOF values
obtained from PMU estimations of system frequency. This
has the objective of enabling the simultaneous capture of
both PMU data and raw voltage waveforms during SSO
events, allowing for a full understanding of the practical
limits of the capability of PMUs for SSO detection, and
subsequent characterisation of events. The detection
algorithm has been defined starting from a large dataset of
SSOs measured on the transmission grid, and has then been
tested to ensure its validity, using both real and synthetic
test signals. It’s also been shown that the validity and the
robustness of the method is dependent on the choice of the
parameters and those are influenced by grid conditions e.g.
noise levels or existing disturbance, requiring care in the
choice of the parameters.

Future research will involve deploying the developed
algorithm on dedicated advanced waveform recorders
strategically placed within the power grid. This will enable
the capture and detailed analysis of real SSO events with
high sampling rates and appropriate measurement
bandwidth, essential to improve situational awareness and
event characterisation.

Acknowledgement

This work was supported by the UK government’s
Department for Science, Innovation and Technology
(DSIT).

References

[1] CIGRE JWG C4/B4.52, “CIGRE TB 909 - Guidelines for
Subsynchronous Oscillation Studies in Power Electronics
Dominated Power Systems,” 2023.

National Grid ESO, “GC0077: Sub-Synchronous
Oscillations (SSO),” 2016.

Y. Cheng et al., “Real-World Subsynchronous Oscillation
Events in Power Grids With High Penetrations of Inverter-

(2]
(3]

115

(4]

[5]

(6]

(71

(8l
(0]

[10]

[11]

[12]

[13]

[14]

[18]

[16]

Based Resources,” IEEE Transactions on Power Systems,
vol. 38, no. 1, 2023.

S. Choi, “Massive Wildfires in Korean Eastern Area and
Sub-Synchronous Oscillation Events,” in IEEE PES
General Meeting, PES 2023, 2023.

S. Lodetti, P. Davis, D. Ritzmann, and P. Wright,
“Measurement and Detection of Sub-synchronous
Oscillations in Power Electronics Dominated Power
Systems,” in Conference on Precision Electromagnetic
Measurements (CPEM), Denver, Colorado, USA, 2024.
C. Wang, C. Mishra, K. D. Jones, R. M. Gardner, and L.
Vanfretti, “Identifying Oscillations Injected by Inverter-
Based Solar Energy Sources,” in IEEE Power and Energy
Society General Meeting, 2022.

H. Liu et al., “Impacts of subsynchronous and
supersynchronous frequency components on
synchrophasor measurements,” Journal of Modern Power
Systems and Clean Energy, vol. 4, no. 3, pp. 362-369,
2016.

AEMO, “West Murray Zone Power System Oscillations
2020-2021 [report],” no. February, 2023.

T. Rauhala, A. M. Gole, and P. Jarventausta, “Detection
of Subsynchronous Torsional Oscillation Frequencies
Using Phasor Measurement,” IEEE Transactions on
Power Delivery, vol. 31, no. 1, pp. 11-19, Feb. 2016, doi:
10.1109/TPWRD.2015.2436814.

F. Zhang, L. Cheng, W. Gao, and R. Huang,
“Synchrophasors-based identification for subsynchronous
oscillations in power systems,” IEEE Trans Smart Grid,
vol. 10, no. 2, pp. 2224-2233, 2019.

H. Liu, Y. Qi, J. Zhao, and T. Bi, “Data-Driven
Subsynchronous Oscillation Identification Using Field
Synchrophasor Measurements,” IEEE Transactions on
Power Delivery, vol. 37, no. 1, pp. 165-175, Feb. 2022,
doi: 10.1109/TPWRD.2021.3054889.

C. Canizares et al., “Benchmark Models for the Analysis
and Control of Small-Signal Oscillatory Dynamics in
Power Systems,” IEEE Transactions on Power Systems,
vol. 32, no. 1, pp. 715-722, Jan. 2017, doi:
10.1109/TPWRS.2016.2561263.

Y. He, W. Du, Q. Fu, and H. F. Wang, “A model-free
method to detect the risk and locate the sources of sub-
synchronous oscillations in a large-scale renewable power
system,” International Journal of Electrical Power &
Energy Systems, vol. 165, p. 110460, Apr. 2025, doi:
10.1016/J.1JEPES.2025.110460.

IEC/IEEE 60255-118-1, “Measuring relays and protection
equipment — Part 118-1: Synchrophasor for power
systems — Measurements,” 2018.

“Power System Oscillations,” Aemo.com.au, 2024.
https://aemo.com.au/energy-systems/electricity/national-
electricity-market-nem/system-operations/power-system-
oscillations (accessed March. 25, 2025).

National Grid ESO, “Sub-synchronous oscillations in GB
- Current state and plans for future management”, May
2024.



