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Abstract. With the increasing intelligence of power
systems and the complexity of equipment, traditional
fault prediction based on experience or statistical
methods is difficult to cope with multi-dimensional
nonlinear data. Existing research has limited accuracy in
high-dimensional features, complex working conditions
and cross-device applications. This paper combined
LightGBM with particle swarm optimization (PSO), used
LightGBM (Light Gradient Boosting Machine) to model
nonlinear features and handle sample imbalance, and
used PSO to achieve automatic hyperparameter tuning to
build a high-precision and highly adaptable power
equipment fault prediction and diagnosis model. In the
design of the intelligent fault identification system, this
paper first processed the raw data such as voltage,
current, temperature, vibration, etc., and extracted time
series statistics, frequency domain features and change
rate features to construct input variables. Then, the
LightGBM model is used to establish a nonlinear
mapping relationship between the equipment operation
status and the fault mark, and the PSO algorithm is
introduced to guide the particle iterative search for the
optimal hyperparameter combination of LightGBM by
minimizing the validation set loss function as the fitness
function. Finally, this paper used the SMOTE (Synthetic
Minority Over-sampling Technique) method to enhance
fault class samples to alleviate the sample imbalance
problem, and set category weights to improve
recognition accuracy. Experiments show that the
proposed method has a maximum fault identification
accuracy of 0.84 and a recall rate of 0.95 (partial
discharge). The measured detection delay on the edge
computing platform is as low as 9.1 seconds (insulation
degradation), and the fault classification F1 score is 0.94
(partial discharge), which are significantly better than
traditional models. The area under the ROC curve is 0.87,
achieving high-precision and low-latency power fault
warning.
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1. Introduction

The complexity and diversity of the operating status of
power system equipment are constantly increasing,
making it difficult for traditional fault diagnosis methods
that rely on manual experience or linear statistical feature
modeling to meet the needs of actual engineering
applications. Modern power equipment widely integrates
sensor systems, which can collect multi-source and
multi-dimensional operating parameter data in real time.
However, in the context of the rapid growth of
multi-source data, how to accurately identify potential
faults has become an important challenge [1,2].
Equipment failures can cause power outages and
economic losses, and are more likely to bring about
systemic risks. Therefore, high-precision and scalable
prediction models are critical to ensuring the safe
operation of power grids [3,4].

The currently widely used machine learning methods
have limited processing capabilities for high-dimensional
features, are prone to accuracy fluctuations under
multiple working conditions, and have weak
generalization capabilities [5-7]. Although traditional
methods such as SVM (Support Vector Machine),
random forest, and neural network can capture some
nonlinear relationships, the models are prone to
overfitting or recognition bias in situations where data
distribution is complex and power conditions are
dynamically changing [8,9], making it difficult to meet
the dual requirements of stability and sensitivity in
practical applications. Researchers have attempted to
improve the prediction effect by introducing more
complex model structures or optimization algorithms,
and have achieved performance improvements to a
certain extent. However, most existing models rely on
static parameter settings and empirical feature
engineering, lacking dynamic adaptive capabilities,
which limits their application value in multiple devices
and scenarios [10]. At the same time, some studies have
ignored the impact of sample imbalance in prediction
tasks. In power systems, normal operating data is far
more than fault data, which makes the model more likely
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to be biased towards the main class samples during
training, resulting in missed detection and reducing the
effectiveness of actual warnings [11,12]. In addition,
some methods introduce complex deep network
structures, which improve the prediction performance,
but also bring high computing resource consumption and
deployment complexity, which is not conducive to rapid
application in edge devices or real-time systems.

Existing research mainly focuses on the modeling and
prediction mechanism design of power equipment status.
Most studies extract statistical features, transformation
features or spectral features from status data as input
variables and use machine learning algorithms for
training. In terms of model selection, traditional methods
such as random forest, support vector machine and
gradient boosting tree are widely used and show good
results in some specific scenarios. In terms of method
optimization, some studies have manually set model
parameters or used grid search to adjust parameters, but
this process has high computational cost and is prone to
fall into local optimality, making it difficult to adapt to
large-scale data processing and real-time prediction
requirements.

In order to improve the adaptability of the prediction
model under non-stationary and multi-operating
conditions, an adaptive optimization strategy is
introduced to adjust the model hyperparameters. For
example, using swarm intelligence methods such as
genetic algorithms, ant colony algorithms, and PSO
algorithms to automatically search for the optimal
configuration in the parameter space can reduce the
degree of manual intervention and improve model
performance. Among them, PSO has attracted attention
due to its simple structure, fast convergence speed, and
adaptability to high-dimensional optimization problems.
By simulating the group collaboration behavior of
individuals in the solution space, the search path is
gradually updated iteratively, the optimal point is found
in the parameter combination space, and the overall
performance stability of the model is improved.

In recent years, gradient boosting tree algorithms have
been increasingly used in power data modeling. Among
them, LightGBM has become an important tool for
power equipment fault prediction research due to its high
computational efficiency, support for large-scale features,
ability to handle missing values, and built-in category
feature processing mechanism [13,14]. Compared with
XGBoost (Extreme Gradient Boosting), LightGBM
shows better speed and memory performance when
processing large-scale training data, and reduces
modeling costs while maintaining accuracy. Many
studies have shown that LightGBM is highly sensitive to
nonlinear and cross-features, and can more effectively
capture the implicit associations between complex states
and fault markers. After combining with intelligent
optimization algorithms, the prediction effect and
generalization ability of LightGBM are further enhanced,
especially for scenarios with high-dimensional input and
unbalanced label distribution [15,16].

Although the above methods have achieved certain
breakthroughs in performance, most current studies still
rely on static strategies in the parameter adjustment stage,
ignoring the nonlinear effects of dynamic changes and
parameter interactions during model training, which
makes the model prone to local optimality [17,18]. Some
studies introduced PSO to adjust parameters, but in the
actual modeling process, there is a lack of systematic
integration of search space, particle behavior and
objective function structure, which affects the algorithm
convergence speed and parameter stability [19,20]. In
addition, power equipment data has significant time
series and non-stationarity. Some studies have not
properly processed the sample partitioning strategy and
time series feature structure, resulting in information
leakage risks between the training set and the validation
set [21,22], which ultimately affects the authenticity of
the evaluation results and the actual effect after the
model is deployed.

This paper aims at the fault prediction needs of power
equipment under complex working conditions and
constructs a prediction model that integrates LightGBM
and PSO. In the overall process, the multi-dimensional
raw data is first subjected to sliding window denoising,
outlier processing and normalization operations to
construct a set of input variables containing time domain
statistics, frequency domain transformation and rate of
change characteristics. PSO uses the loss function on the
cross-validation set as the fitness evaluation indicator,
and automatically adjusts the key hyperparameters in
LightGBM such as the learning rate, maximum depth,
and number of leaves through global particle search and
local optimal update mechanism until the set
convergence conditions are met or the maximum number
of iterations is reached, thereby improving the robustness
and generalization ability of the model. In terms of
sample processing, this paper introduces the SMOTE
method to expand minority class samples and combines
the category weight mechanism to solve the recognition
offset problem caused by sample imbalance. In the
model verification stage, a timestamp-based sample
stratification strategy is adopted to ensure that there is no
time overlap between the training and verification sets,
thereby improving the credibility and generalizability of
the results. The proposed method performs well in fault
identification, with the highest accuracy reaching 0.84
and the recall rate of partial discharge fault reaching 0.95.
The detection delay of insulation degradation fault is as
low as 9.1 seconds, and the F1 score of partial discharge
fault classification reaches 0.94, which are significantly
better than traditional technologies. The area under the
ROC curve reaches 0.87, indicating that the method can
achieve high-precision and low-latency power fault
warning.

In view of the strong time series and multi-condition
change characteristics of power equipment operation
data, this paper uses LightGBM to perform structured
modeling of multi-dimensional features, and uses its
gradient-based splitting strategy to effectively identify
nonlinear patterns across time periods. Compared with
traditional sequence models, LightGBM has higher
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advantages in training speed and computing resource
usage, and is particularly suitable for edge deployment
environments that are sensitive to response time.
Through the above methods, this paper aims to improve
the prediction accuracy and diagnostic response
capabilities of power equipment under multiple working
conditions and multiple feature scenarios, and to build a
set of intelligent fault prediction frameworks with
practical value and scalability.

The main contributions of this paper include: (1)
Proposing a joint optimization framework based on
LightGBM and PSO to solve the local optimal problem
of traditional models under complex working conditions
through dynamic parameter search; (2) Integrating
SMOTE and category weight calibration strategy to
systematically alleviate the recognition bias caused by

the imbalance of fault samples; (3) Designing a time
series-aware data partitioning strategy to avoid the risk
of information leakage and improve the generalization
ability of the model in actual deployment. The
subsequent chapters of this paper are arranged as follows:
Section 2 describes the framework design of the
intelligent fault identification system in detail; Section 3
shows the experimental results and performance
comparison; Section 4 summarizes the research
conclusions and looks forward to future directions.

2. Design of Intelligent Fault Identification System

Regarding the overall method design of the intelligent
fault identification system for power equipment, the
framework diagram is shown in Figure 1:

Figure 1. Overall framework of the intelligent identification system for power equipment faults.

Figure 1 shows the overall framework of the intelligent
identification system for power equipment faults, which
includes three core modules: the data acquisition and
preprocessing module is responsible for raw signal
denoising, anomaly detection and missing value
processing, and generates high-quality feature data. The
intelligent identification model module uses the
LightGBM classifier combined with PSO to implement
feature analysis and complete fault feature extraction.
The diagnosis and output module accurately classifies
the fault type and generates confidence assessment and
warning level. The system adopts modular design, and
through feature engineering optimization and parameter
adaptive adjustment, it realizes the whole process
processing from raw monitoring data to fault diagnosis
results, ensuring that the output results have practical
engineering value.

A. Abnormal Data Cleaning and Feature
Construction

1) Multi-Dimensional Raw Monitoring Data
Preprocessing Process

The power equipment status data is collected in real time
by a variety of sensors deployed on site, mainly
including multiple types of continuous variables such as
current, voltage, temperature, vibration acceleration, etc.
Considering the interference factors such as missing,
anomaly, outlier and noise fluctuation in the original data,
data quality control and standardization should be carried
out before modeling [23,24]. This study firstly verifies
the time integrity of each type of signal and removes the
sections with unstable sampling frequency or interrupted
recording. On the premise of keeping the time series
information intact, the sliding window averaging method
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(Window Size = 5) is used to smooth the noise of each
variable to suppress the influence of high-frequency
interference items on the fault feature judgment; at the
same time, the triple median absolute deviation method
(Median Absolute Deviation, MAD) is introduced to
identify local mutation points, remove or replace outlier
samples, and ensure the consistency of sample
distribution.

In the standardization phase, the Z-score normalization
method is used to process all continuous variables, that is,
each feature is subtracted from its sample mean and
divided by the standard deviation to convert it into a
standard distribution with a mean of 0 and a standard
deviation of 1, which is used to improve the robustness
of the LightGBM model to feature dimension differences.
For possible missing values, local mean interpolation is
used to repair them to avoid data filling causing
disturbances to the fault sample structure.

Figure 2. De-noising of voltage and temperature signals and marking of key fault points during the operation of power equipment.
Figure 2 (a) Denoising of voltage and temperature signals during operation of power equipment; Figure 2(b) Key fault point marking.

Figure 2 is a schematic diagram of voltage and
temperature signal denoising and key fault point marking
during the operation of power equipment. Left figure:
Figure 2(a), the horizontal axis of the left sub-figure is
time (seconds) and the vertical axis is voltage (volts),
showing the fluctuation and superimposed noise of the
original voltage signal, as well as the voltage curve
smoothed after sliding average filtering. The red solid
circles mark three fault points: short-term overvoltage
(the voltage rises to 250V in about 0.5 seconds),
continuous undervoltage (drops to 180V in about 1.5
seconds) and instantaneous shock (rises to 280V in about
8 seconds), reflecting the diversity and suddenness of
equipment voltage anomalies. Figure 2(b) also has time
(seconds) on the horizontal axis and temperature
(degrees Celsius) on the vertical axis, showing the
low-frequency fluctuation and noise of the temperature,
as well as the smooth temperature curve. The
overheating fault interval is marked with a red line
between 20 and 25 seconds, and the temperature rises
sharply to more than 50 degrees Celsius, reflecting the
risk of thermal runaway in the operation of the
equipment.

2) Time Series and Frequency Domain Multi-Scale
Feature Extraction Strategy

After data cleaning is completed, it is necessary to
construct high-quality features with distinguishing
capabilities for the equipment state sequence based on
the modeling target. The feature extraction process is
designed around the time window, setting the fixed
sliding window length to 60 seconds and the step length
to 10 seconds. In each window, 24 dimensions of
statistical, frequency domain and dynamic change rate

features are extracted. First, at the time domain level, six
statistical indicators, including mean (Mean), standard
deviation (STD), maximum value (Max), minimum
value (Min), skewness (Skewness), and kurtosis
(Kurtosis), are extracted to characterize the stability and
amplitude fluctuation of the equipment's operating status.

In terms of frequency domain feature construction, Fast
Fourier Transform (FFT) is used to perform spectrum
transformation on temperature and vibration signals, and
the energy density ratio, main frequency peak and
frequency domain mean of the first five main frequency
components are extracted as frequency domain
descriptors reflecting the characteristics of mechanical
faults. A total of 9-dimensional frequency domain
features are extracted [25,26]. This processing is used to
capture the hidden patterns of early mechanical faults in
the frequency spectrum, which helps to improve the
sensitivity of the model to weak anomalies. Assume that
the amplitude of the kth frequency component after FFT
transformation is kX , and the frequency domain energy
density ratio is calculated as formula 1:

2

2

1

k
k M

jj

X
P

X





(1)

In formula 1, M is the FFT length, and kP represents
the energy proportion of the k th frequency
component.

In addition, the change rate characteristics based on
differential operation are introduced to describe the
intensity of the signal in a short period, including the
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first-order difference mean (ΔMean), the first-order
difference variance (ΔVar), the average absolute change
amplitude (ΔMAV) between adjacent sampling points
and other characteristic indicators. These features can
enhance the model's ability to respond to sudden events
(such as overheating, breakdown, arc jitter, etc.). The
above features are extracted and combined in each
window, and finally a feature sample set with a
dimension of N×24 (N is the number of sliding windows)
is constructed for subsequent model training.

Considering the differences in device types and the
impact of environmental factors, in order to avoid
dimensional confusion and redundancy between features,
a feature selection mechanism based on the minimum
redundancy maximum relevance (MRMR) criterion is
further introduced. MRMR maximizes the mutual
information between features and category labels while
minimizing redundancy between features, and is defined
as Formula 2:

2 ,

1 1max ( ; ) ( ; )
i i j

i i jx S x x SS
I x c I x x

S S 

 
 

  
  (2)

In formula 2, S is the selected feature subset, ( ; )iI x c
is the mutual information between feature ix and
category label c , and ( ; )i jI x x is the mutual
information between features.

By calculating the mutual information between each
feature and label and the redundancy between features,
the top 16 most discriminative feature subsets are
selected to optimize the model learning efficiency and
avoid overfitting. In actual operation, the feature
selection process is carried out within the training set to
prevent the feature selection results from leaking into the
validation set, ensuring the objectivity and generalization
performance of the evaluation.

B. Prediction Model Construction Based on
LightGBM

1) Model Input and Output Structure Setting

After completing feature construction and selection, the
model training phase uses the feature vector extracted in
each sliding time window as input, and the target output
is the category identification of whether a fault occurs in
the current time window. The label annotation comes
from the actual operation and maintenance records and
the historical alarm information of the equipment, and is
mapped to the corresponding sliding window through
time alignment. For fault type annotation, a unified
multi-category label encoding mechanism is adopted to
assign fixed label numbers to various faults (such as
overheating, short circuit, grounding, and voltage
abnormality). If the research goal is only a binary
classification of fault or not, the samples are marked as
"normal" and "abnormal" [27,28]. The constructed
dataset is divided into a training set and a validation set,

which are divided according to the device running time
sequence to ensure that the validation set does not
contain data that overlaps with the training set time,
avoiding evaluation bias caused by information leakage.

In order to fully explore the nonlinear relationship and
combination effect between features, this paper uses
LightGBM (Light Gradient Boosting Machine) as the
main modeling framework. LightGBM is an efficient
implementation based on the Gradient Boosting Decision
Tree (GBDT), which supports histogram-based feature
partitioning and leaf-first tree structure growth strategy,
greatly reducing memory and computing overhead while
ensuring learning accuracy. In the model initialization
stage, this paper sets boosting_type to "gbdt", the loss
function to "binary_logloss" or "multiclass", and
automatically adapts the binary or multi-classification
output structure according to the target task type.

2) Tree Structure Generation and Feature Splitting
Mechanism

During the model training process, the gradient boosting
method is used to build weak classifiers round by round,
and the overall prediction performance is iteratively
improved through the idea of minimizing the residual. In
each iteration, LightGBM generates a new tree based on
the current residual gradient, and uses a histogram-based
splitting method to calculate the split gain of each feature.
The mechanism first discretizes the continuous variable
into k buckets (k=255), and statistically calculates the
gradient and second-order derivative of the samples in
the bucket, significantly reducing the complexity and
improving the splitting efficiency. In terms of splitting
strategy, LightGBM uses a leaf-wise strategy to construct
the optimal gain leaf node in each round, and replaces
the traditional level-wise structure with a depth-first
growth method to improve the fitting ability; To prevent
overfitting, set max_depth=8 to limit the tree depth, and
set min_data_in_leaf=30 to prevent the generation of leaf
nodes with too small sample numbers. For a candidate
split point S of a feature, the split gain of the leaf node
is defined as Formula 3:

2 2 2( )
( ) L R L R

L R L R

G G G G
Gain s

H H H H


  


   
   

(3)

,L LG H and ,R RG H are the gradient and second-order
gradient sum of the left and right child nodes,
respectively,  is the leaf weight regularization term,
and  is the split penalty parameter.

In the feature selection stage, LightGBM can
automatically calculate the usage frequency and
information gain of each feature to evaluate its
contribution to the model performance. During the
training process, feature_fraction=0.8 is used to
randomly sample feature subsets to improve the
generalization ability of the model and improve the
robustness under different data structures of multiple
working conditions and multiple devices. To adapt to the
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unbalanced sample scenario, the is_unbalance=true
parameter is set, and the class_weight strategy is used to
explicitly weight the minority class labels to avoid
overfitting the model to the main class. The number of
iterations is dynamically controlled by
early_stopping_rounds=50. If there is no significant
performance improvement after 50 consecutive rounds,
the training is terminated. The final model uses the
structure with the best performance on the validation set
for solidification output. Model prediction output
calculation The final prediction value of LightGBM is
the weighted sum of all trees, which is formula 4:

1
(x ),    T

i t i tt
y f f



  F (4)

T is the total number of trees, tf is the regression tree
function generated in the t round, and x i is the
sample feature vector.

In order to enhance the stability of the model and avoid
extreme sample perturbations in the training process, a
5-fold cross validation is used to evaluate the model
performance after each iteration within the training set,
and the mean is used as the final model indicator
reference. After the training is completed, the model
output includes the predicted probability and final
classification label of each class, and the prediction
results can be used for subsequent evaluation and error
analysis.

Figure 3. Visualization of LightGBM model training and leaf node risk distribution. Figure 3 (a) LightGBM model training; Figure 3
(b) Visualization of leaf node risk distribution.

Figure 3 (a) shows the trend of the loss function
changing with the number of iterations during model
training. The horizontal axis is the number of iterations
(Iteration), the vertical axis is the binary log loss (Binary
Log Loss), the green curve represents the training set
loss, and the red curve represents the validation set loss.
The training loss stabilizes after a rapid decline in the
first 50 rounds, and the validation loss no longer
decreases significantly after the 100th round, triggering
the Early Stopping mechanism, indicating that the model
has achieved optimal generalization performance. Figure
3 (b) on the right shows the leaf node sample distribution
and fault probability analysis of the LightGBM model.
The horizontal axis is the leaf node index, the left
vertical axis is the number of samples for each node
(Sample Count), and the right vertical axis is the fault
probability of the corresponding node (Fault Probability).
It can be seen that the number of samples of nodes 3 and
8 is large, and the failure probabilities are 24.6% and
26.7% respectively, indicating that the model has
identified high-risk distribution areas.

In order to further quantify the contribution of features to
fault detection, this paper conducts an interpretability
study on the LightGBM model through SHAP (Shapley
Additive Explanations) analysis. The SHAP value
intuitively shows the importance ranking of features by
calculating the marginal contribution of each feature to
the model output. The experimental results show that the

frequency domain energy density ratio of the temperature
signal and the absolute mean of the voltage change rate
(ΔMAV) have the highest SHAP values for fault
classification, indicating that these two types of features
play a key role in identifying insulation degradation and
partial discharge faults. In addition, the main frequency
kurtosis of the vibration signal shows a significant
contribution to mechanical faults.

C. Automatic Search of PSO Parameters

1) Definition of Parameter Space and Construction
of Search Target

In order to improve the performance of the LightGBM
model in the task of multi-condition power equipment
fault prediction, its key hyperparameters need to be tuned.
This paper introduces the PSO algorithm to
automatically search for the hyperparameter combination
of LightGBM to avoid performance fluctuations and
local optimal problems caused by manually setting
parameters [29,30]. First, the key parameters to be
optimized include num_leaves, max_depth, learning_rate,
feature_fraction, bagging_fraction and lambda_l1. The
search space is defined as follows: num_leaves ∈ [20,
80], max_depth ∈ [3, 12], learning_rate ∈ [0.01, 0.3],
feature_fraction ∈ [0.6, 1.0], bagging_fraction ∈ [0.6,
1.0], lambda_l1 ∈ [0, 5]. All parameters are mapped to
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the real number space for continuous optimization, and
the final result is constrained to be a valid integer or
floating point format within the range supported by
LightGBM [31].

The objective function uses the average F1 score of the
LightGBM model in the 5-fold cross validation of the
training set as the optimization criterion, which is used to
comprehensively evaluate the model's ability to identify
the main class and the fault class. In order to maintain
computational efficiency and search stability, the F1
score is fixed to evaluate 2,000 training samples in each
iteration, and the training and validation structure is
uniformly divided into 5:1 to ensure that the target
evaluation during the optimization process has time
consistency and stability. The global objective function
of the particle swarm is to maximize the average F1
value.

2) PSO Process and Convergence Mechanism
Settings

In the initialization phase, the particle swarm size is set
to 30 and the maximum number of iterations is 50. Each
particle represents a parameter combination vector
containing 6 dimensions. The initial position is generated
by uniformly distributed random sampling, and the
corresponding velocity vector is set [32,33]. The global
optimal value g_best and the individual optimal value
p_best are initialized to empty. The speed update and

position update are performed using the standard PSO
formula, as shown in formulas 5-6:

1
1 1 2 2( ) ( )t t best t best t

i i i i iv w v c r p x c r g x           (5)

1 1t t t
i i ix x v   (6)

The inertia weight is 0.7w  , the individual learning
factor is 1 1.5c  , the group learning factor is 2 1.5c  ,
and  1 2, 0,1r r  is a random number used to increase
the search diversity. In order to prevent particles from
falling into the boundary or infinite fluctuations, a
maximum limit is set for the speed iv , and rebound
processing is performed after the position exceeds the
boundary.

After each round of iteration, the F1 score of the current
particle is calculated according to the objective function.
If it is better than the historical p_best, the current
individual optimal position is updated, and g_best is also
updated. To prevent convergence from falling into the
local optimum, an early stopping mechanism is set to be
triggered when g_best has not been significantly
improved for 10 consecutive rounds. At the same time, a
local perturbation strategy is introduced. When the
global optimal value changes by less than 1e-4 in the
first 5 rounds, the Gauss random perturbation mechanism
is used to fine-tune g_best to jump out of the early
stability trap.

Figure 4. Performance evolution and search path of PSO in the process of parameter tuning of power equipment fault prediction
model. Figure 4 (a) PSO performance evolution during parameter setting of power equipment fault prediction model; Figure 4 (b)

Search path.

Figure 4 shows the performance evolution and search
path of PSO during the parameter adjustment process of
the power equipment fault prediction model. The
horizontal axis of Figure 4 (a) on the left is the number
of iterations, and the vertical axis is the corresponding F1
score, which is used to reflect the fitness change trend of
the global optimal solution during the training process.
The F1 value grew rapidly in the first 10 iterations, and
entered the stable convergence zone after the
perturbation strategy was added near the 10th iteration,
and eventually tended to be above 0.85, indicating that

PSO has strong global search and convergence
capabilities. The right figure is Figure 4 (b), which is the
search trajectory of the three-dimensional parameter
space, showing that the particles start from the initial
point distribution and gradually converge to the optimal
parameter point. This reflects the search efficiency and
convergence path of the PSO algorithm in the
multi-dimensional nonlinear hyperparameter space, and
provides a visualization basis and parameter adjustment
reference for improving the performance of the
LightGBM model.
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The final output parameter combination is the optimal
solution obtained during the search process, which is
applied to the final model training stage of LightGBM to
ensure that the constructed model has the best structural
expression ability and generalization ability in the target
task. In order to verify the stability and robustness of the
search process, the algorithm was repeated three times
under different random seeds, and the average optimal
solution was finally taken as the final deployment
parameter of the model.

D. Imbalanced Sample Enhancement and Category
Calibration

1) Sample Distribution Analysis and Enhancement
Strategy

There is a serious imbalance in the distribution of classes
in power equipment status monitoring data. The
proportion of fault samples is significantly lower than
that of normal operating data. This leads to the tendency
of traditional machine learning models to overfit the
majority class samples during training, and the learning
effect of minority class features is poor, which in turn
affects the recognition accuracy and recall rate [34]. To
address the modeling problem of such unbalanced data,
this study introduces the synthetic minority
over-sampling technique (SMOTE). This method
performs neighborhood analysis on minority class
samples in the feature space and uses linear interpolation
to generate new samples with topological continuity,
effectively avoiding the overfitting risk caused by
traditional repeated sampling. In the specific
implementation, the neighborhood parameter is set to
k=5, which ensures the continuity of the sample feature
space while improving the diversity of synthetic samples.
The enhancement process first extracts minority class
samples from the training set, calculates their k nearest
neighbor vectors, and then randomly selects adjacent
sample pairs and linearly combines them in the feature
dimension to generate new samples with statistical
representativeness. This strategy increases the number of
fault samples to a level comparable to that of the
majority class, making the data distribution balanced and

enhancing the model's ability to identify key fault
features. This method effectively alleviates the problem
of data scarcity while maintaining the topological
structure of the original sample set, and is suitable for
complex industrial scenarios where multiple fault modes
coexist.

Neighboring samples are selected in the feature space
and linear interpolation is performed to generate new
samples with statistical representativeness. The process
first extracts minority class samples from the training set,
calculates their k nearest neighbor vectors, and then
randomly selects adjacent sample pairs and performs
linear combinations on the feature dimension. This
strategy increases the number of fault samples to a level
comparable to that of the majority class, making the data
distribution balanced.

2) Class Weight Adjustment and Model Adaptation

In addition to the balance of sample quantity, this paper
introduces a class weight calibration mechanism to
further improve the model's ability to identify minority
classes. For the LightGBM model, the class weight is set
in the training parameters, and the weighting is
performed according to the inverse of the class sample
ratio, that is, a higher weight is assigned to the minority
class, which leads to a greater penalty for
misclassification of the minority class during model
training. The specific weight calculation formula is
Formula 7:

i
i

Nw
n

 (7)

N is the total number of samples, in is the number of
samples of category i , iw is the weight of the
corresponding category. Through this mechanism, the
model adjusts the weighted losses of different categories
when optimizing the objective function, improving the
recall rate and F1 value of the minority class while
suppressing the bias dominated by the majority class.

Figure 5. Distribution changes of fault samples in feature space under SMOTE enhancement strategy.
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Figure 5 illustrates the distribution evolution of fault
samples in the feature space after applying the SMOTE
(synthetic minority oversampling technology)
enhancement strategy, which aims to solve the sample
imbalance problem faced by power equipment fault
prediction. In the figure, feature 1 is the horizontal axis
and feature 2 is the vertical axis; the blue, red and pink
points correspond to the original normal samples, the
original fault samples and the synthetically generated
fault samples, respectively. Analysis of the distribution
diagram shows that the original fault samples are mainly
concentrated near the coordinate (1,1) in the feature
space. The generated synthetic samples are reasonably
extended in their neighborhood, showing a regional
distribution feature of continuous density. This
enhancement method effectively improves the
representation ability of fault categories in the feature
space, which can assist subsequent classification models
to more accurately identify minority classes, thereby
improving the recall rate and enhancing the
generalization performance of the model. The overall
distribution pattern clearly shows that the newly added
synthetic samples have not invaded the normal class
sample area, successfully avoiding the risk of category
aliasing caused by artificial sample interference.
Therefore, this scheme has laid a more solid and reliable
data foundation for auxiliary fault diagnosis of power
equipment under unbalanced sample conditions.

E. Model Training and Validation Set Division

1) Time-Series-Aware Data Division Strategy

The power equipment fault prediction task involves the
continuous change of equipment status over time. The
time series characteristics of fault events are obvious,
and the data has strong time correlation. To ensure the
scientific nature of model training and testing and the
authenticity of the results, this paper adopts a
training-validation set division strategy based on time
series. The specific operation is to sort the samples
according to the timestamp in the complete collected
time series data, select the first 70% of the time period
data as the training set, and the remaining 30% of the
data as the validation set. This division method
effectively avoids the time overlap between the training
set and the validation set caused by random sampling,
avoids information leakage, and improves the prediction
credibility of the model in a real deployment
environment. During the division process, special
attention is paid to ensuring that the training set contains
representative samples of normal and faulty equipment
operation, and the validation set covers a variety of fault
types and different operating states to ensure the
generalization of the model and the comprehensiveness
of the evaluation.

In addition, considering the seasonal fluctuations,
operating mode switching and emergencies in the
operation of power equipment, this paper verifies the
rationality of the statistical characteristics of the training
set and the validation set by comparing the load
characteristics, temperature changes and fault

frequencies in different time periods. This ensures that
the training set covers the main operating modes and the
validation set can fully test the model's ability to identify
new modes and rare faults. This time series division
meets the principles of data science and is also in line
with the application scenarios of online monitoring of
actual power systems.

To avoid the risk of data leakage, the hyperparameter
adjustment in this paper strictly follows the following
process: (1) A 5-fold cross-validation is performed within
the training set, and the F1 score of the PSO search is
completely based on the cross-validation results; (2) The
entire training set data is used in the final model training
phase, but the validation set is always kept independent
and is only used for the final performance evaluation.
Regarding the application of SMOTE, its enhancement
operation is completely limited to the training set, that is,
oversampling is performed independently within the
training fold of each cross-validation, while the
validation fold and the test set retain the original
distribution. This strategy ensures the objectivity of
model evaluation and avoids overestimation of
performance due to test data enhancement.

2) Rationality Guarantee of the Training Process

The model training uses the LightGBM gradient boosting
tree algorithm based on the training set, combined with
PSO to automatically adjust key hyperparameters, and
gradually improve the model's ability to fit complex
nonlinear fault characteristics. During the training
process, the samples are learned in batch iterations for
multiple rounds, and the model parameters are
dynamically adjusted to optimize the classification
performance. To prevent overfitting,
early_stopping_rounds is set to 50, that is, when the
performance index of the validation set does not improve
significantly in 50 consecutive iterations, the training
process is terminated in advance to ensure the balance
between the generalization ability of the model and the
training efficiency.

During the training, the multi-dimensional indicators
such as training error, validation error, F1 score, recall
rate and accuracy are recorded in detail, and these
indicators are used to monitor the model learning process
and adjust the strategy. The training process is verified
multiple times through cross-validation to ensure the
stability and reliability of the training results. The
training process uses multi-threaded parallel computing
technology to accelerate model training and
hyperparameter search to meet the computing needs of
large-scale, multi-dimensional power equipment data. At
the same time, the log system is used to warn of
abnormalities in the training process, and to adjust the
training parameters in time to prevent training failure or
slow convergence.

In summary, the time-series-aware training-validation set
division and the strict training control mechanism jointly
ensure the scientificity and practicality of the model in
the complex power equipment fault prediction task, and
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effectively improve the model performance and
generalization ability.

3. Fault Identification Performance Evaluation

The evaluation experimental data set used in this study
comes from the online monitoring platform of a large
power system, covering time series data collected by
multi-dimensional sensors such as voltage, current,
temperature and vibration. The data spans more than two
years and contains a variety of typical fault types and
normal operation samples, with rich characteristics of
operating condition changes. To ensure the scientificity
and representativeness of the evaluation, the data has
undergone a rigorous preprocessing process, including
denoising, outlier removal and normalization, to
construct a high-quality feature set. The data set is
divided into training sets and test sets according to time
series to avoid leakage of time series information and
ensure the authenticity of model evaluation. The test set
specifically covers a few types of fault samples to verify
the model's fault identification ability in an unbalanced
environment. The overall data structure meets the
requirements of multi-classification and binary
classification tasks, providing a solid foundation for the

comprehensive evaluation of fault identification
performance.

A. Accuracy

The model first generates a predicted category for each
sample in the entire test set; then, the number of samples
whose predicted category matches the true category is
counted; finally, the accuracy is obtained by dividing this
value by the total number of samples in the test set. This
indicator intuitively depicts the overall correctness of the
model's prediction results and has good applicability in
scenarios where the distribution of test data categories is
relatively balanced. However, there is often a significant
sample imbalance in power equipment fault diagnosis
scenarios—the number of normal operating samples is
much higher than that of fault samples. In this case, the
accuracy value is easily dominated by the majority class
samples, and it cannot effectively reveal whether the
model's recognition ability for the minority class (the
fault class) meets the standard. Therefore, relying solely
on accuracy is not enough to fully judge the performance
of the model. It must be combined with other key
evaluation indicators for comprehensive consideration.

Figure 6. Comparison of the accuracy of six typical machine learning models under five power system operating conditions.

Figure 6 shows the comparison of the accuracy of six
typical machine learning models under five power
system operating conditions. The horizontal axis
represents different operating scenarios, including steady
state, overload, voltage sag, harmonic pollution and
three-phase imbalance, and the vertical axis represents
the prediction accuracy of the model. Figure 6 shows that
the proposed method has the highest or nearly the highest
accuracy in all scenarios, with the highest accuracy
reaching 0.84, and has obvious advantages in 5 scenarios.
The Transformer model also performs well in some
scenarios, with an accuracy of up to 0.82. In contrast, the
accuracy of traditional SVM and random forests slightly
decreases in some complex working conditions. These
data reflect that the proposed method has strong
adaptability to a variety of typical power system fault
scenarios, and can better balance the accuracy of fault

identification under different operating environments,
and has high practical value and robustness.

B. Recall Rate

The recall rate reflects the model's ability to identify and
cover fault samples, that is, the proportion of fault
samples detected by the model to all actual fault samples.
When calculating, it is necessary to count the number of
samples that are actually faulty and correctly predicted,
and divide it by the number of all real fault samples. The
recall rate is of great significance in power equipment
fault detection and is directly related to the missed alarm
rate. Missed alarms may result in equipment faults not
being discovered in time, increasing operational risks. A
higher recall rate indicates that the model has a strong
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ability to capture potential faults, which helps to achieve
early warning and fault prevention. It is a key indicator

for evaluating the reliability of fault detection systems.

Table 1. Recall rates of six typical models in fault detection.

Fault Type SVM Random
Forest CNN LSTM Transformer Proposed Method

Partial Discharge 0.81 0.83 0.88 0.9 0.92 0.95
Winding Overheat 0.77 0.79 0.85 0.87 0.89 0.93
Insulation Degradation 0.74 0.76 0.83 0.85 0.87 0.91
Core Loosening 0.7 0.72 0.8 0.83 0.84 0.89
Cooling Failure 0.73 0.75 0.81 0.84 0.88 0.92

Table 1 shows the recall rates of six typical models in
five types of power equipment fault scenarios. From the
data, the recall rate of this method is the highest for all
fault types, reflecting its strong fault detection
capabilities. For example, in the "partial discharge" fault,
the recall rate of this method is 0.95, which is better than
Transformer's 0.92 and LSTM (Long Short-Term
Memory)'s 0.90, indicating that it can more effectively
identify key abnormal signals. In the two types of faults,
"winding overheating" and "cooling failure", the
proposed method reached 0.93 and 0.92 respectively,
which are significantly higher than SVM's 0.77 and 0.73,
indicating that it is particularly outstanding in dealing
with heat-related faults. Compared with other models,
the recall rate is generally less than 0.85 in the core
loosening scenario, while the proposed method reaches
0.89, further indicating that it has strong missed
detection control capabilities under complex working
conditions and effectively supports the early warning and

fault response needs of the power system.

C. Mean Detection Delay

The mean detection delay measures the time interval
from the actual occurrence of a fault to the first accurate
detection of the fault. The calculation steps include
recording the fault start time and the first correct alarm
time of the model for each fault sample, calculating the
difference between the two and taking the average. This
indicator reflects the response speed and warning
timeliness of the model. The shorter the delay time, the
more timely the model can detect faults, which gives
maintenance personnel time to repair and adjust the
faults and reduces the risk of equipment damage. The
average detection delay time is a key reference for
evaluating the real-time performance of the model in the
intelligent identification of power system faults.

Figure 7. Analysis of detection delay of six models under different fault and threshold conditions. Figure 7 (a) Analysis of detection
delay of six models under different faults; Figure 7 (b) Analysis of detection delay of six models under different threshold conditions.

The left figure, Figure 7 (a), shows the average detection
delay of six models under five typical faults (such as
partial discharge, winding overheating, core loosening,
etc.), with the horizontal axis representing the fault type
and the vertical axis representing the detection delay
(seconds). It can be seen that the proposed method has a
lower delay for most fault types. For example, in the
"insulation degradation" scenario, the average delay is
only 9.1 seconds, which is significantly better than SVM
(13.9 seconds) and random forest (12.8 seconds),
indicating that the method has a higher real-time

response capability. The right figure, Figure 7 (b),
reflects the changing trend of the average detection delay
of each model under different response thresholds
(horizontal axis 0.1~0.9) (vertical axis is seconds).
Generally speaking, the higher the threshold, the faster
the detection response, but the curve shapes of different
models are different. For example, when the threshold is
0.6, the transformer delay is 12.3 seconds, while the
SVM delay is 15.9 seconds. The Transformer and
method proposed in this paper respond faster while
ensuring accuracy, and show better timeliness in various
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fault scenarios and different judgment sensitivities.

D. F1 Score

The F1 score is an indicator that comprehensively
considers the model's precision and recall. As the
harmonic mean of the two, it reflects the model's
classification performance in a more balanced way.
Precision measures the proportion of true faults among
the fault samples identified by the model, while recall

measures the proportion of all fault samples that are
correctly identified. The F1 score is particularly
important when fault samples are scarce and the
categories are unbalanced. A single indicator is difficult
to fully evaluate the model performance. A high F1 score
indicates that the model has achieved a good trade-off
between reducing false positives and missing negatives,
ensuring both the accuracy of identification and
improving fault coverage. It is an important indicator for
measuring the quality of fault detection.

Table 2. F1 score of the model in power fault classification.

Fault Type SVM Random Forest CNN LSTM Transformer Proposed Method
Partial Discharge 0.79 0.81 0.86 0.88 0.91 0.94
Winding Overheat 0.76 0.78 0.84 0.86 0.89 0.92
Insulation Degradation 0.72 0.75 0.81 0.84 0.87 0.9
Core Loosening 0.68 0.7 0.78 0.82 0.85 0.88
Cooling Failure 0.71 0.74 0.8 0.83 0.86 0.9

Table 2 comprehensively evaluates the accuracy and
coverage of the model in power fault classification. From
the overall data, the F1 score of the proposed method
under various faults is generally leading, and has a more
balanced classification performance. In the key fault type
of partial discharge, the F1 value of the proposed method
is 0.94, which is higher than Transformer (0.91) and
LSTM (0.88), indicating that it not only has
comprehensive recognition, but also takes into account
false alarm control. In the cases of winding overheating
and insulation aging, the proposed method obtained F1
scores of 0.92 and 0.90 respectively, which are better
than the traditional method SVM (0.76 and 0.72),
reflecting that it is more accurate in dealing with faults
with strong time variability and unstable signals. In the
category of loose core, the F1 scores of traditional
models such as CNN (Convolutional Neural Network)

and random forest are 0.78 and 0.70, while the proposed
method is 0.88, showing stronger adaptability and model
generalization ability. These data verify that the proposed
method has high classification accuracy and reliability
under multiple abnormal conditions, and is suitable for
high-risk fault identification tasks of actual power
equipment.

E. Area under the Receiver Operating Characteristic
Curve (AUC)

AUC (Area Under the Curve) evaluates the model's
ability to distinguish between faulty and normal samples
at different judgment thresholds. This paper selects six
typical classification models and draws the ROC curve
for the power equipment fault identification task.

Figure 8. ROC curves of six typical classification models in the task of power equipment fault identification.

Figure 8 shows the receiver operating characteristic
curves (ROC) of six typical classification models in the
task of power equipment fault identification. The
horizontal axis represents the false positive rate (FPR),
that is, the proportion of normal states misjudged as

faults, and the vertical axis represents the true positive
rate (TPR), that is, the proportion of real faults
successfully identified by the model. The closer the
curve is to the upper left corner, the better the model
performance is. The larger the AUC (area under the
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curve) value is, the stronger the overall discrimination
ability of the model is. The results show that the curve of
the proposed method is closest to the upper left corner,
and the AUC reaches 0.87, which is significantly better
than other models, indicating that it has the strongest
ability to distinguish between faults and normal states
under different judgment thresholds. Transformer and
LSTM follow closely behind, with AUCs of 0.86 and
0.85 respectively, showing good learning ability and
generalization. The AUC of traditional machine learning
models such as SVM and Random Forest is only 0.82
and 0.83, and their recognition ability under complex
working conditions is relatively limited.

F. Ablation Experiments and Small-Scale
Deployment Case Studies

In order to evaluate the independent contributions of
SMOTE, MRMR and PSO to model performance, this
paper designed an ablation experiment. The experiments
are divided into three groups: (1) After removing
SMOTE, the recall rate of the model in the insulation
performance degradation fault decreased by 12%,
indicating that SMOTE plays a key role in alleviating
sample imbalance; (2) When random feature selection is
used instead of MRMR, the F1 score is reduced by 7.3%,
verifying the advantages of MRMR in retaining key
features and suppressing redundant information; (3)
When the LightGBM parameters are fixed (without PSO
optimization), the average detection delay of the model
in 5 fault types increases to 15.4 seconds, proving that
PSO optimization significantly improves the parameter
search efficiency. The comparative results of the three
groups of experiments show that SMOTE mainly
improves the recognition ability of minority classes,
MRMR optimizes the feature space structure, and PSO
enhances the generalization performance of the model.
The synergy of the three is the core of the model to
achieve optimal performance.

In order to verify the real-time performance of the model
on edge devices, this paper designed a small-scale
deployment experiment based on Raspberry Pi 4B (4GB
RAM). In the experiment, the optimized LightGBM
model was quantized into a 16-bit integer model and
deployed on the edge device for real-time reasoning. Test
data show that within 72 hours of continuous operation,
the average single reasoning time of the model was
12.3ms (including data preprocessing), and the memory
usage was stable below 320MB, meeting the real-time
requirements of online monitoring of power equipment.
In addition, in the simulated sudden fault scenario, the
model completed fault identification and triggered an
alarm within 3.2 seconds, verifying its feasibility in an
environment with limited hardware resources. This case
shows that the proposed method has practical
engineering value in lightweight deployment and
low-latency response.

G. Statistical Verification of Robustness

To verify the robustness of the model to random seeds
and fault types, this paper conducted three sets of

statistical experiments: (1) Fixed hyperparameters, used
5 different random seeds to train the model, and
calculated the standard deviation of key indicators (F1,
Recall). The results showed that the standard deviation of
F1 was 0.008 and the standard deviation of Recall was
0.012, indicating that the model was less affected by
initialization; (2) Randomly masked 20% of the samples
in the 5 fault types, repeated training 5 times, and the F1
score fluctuated in the range of [0.92, 0.95], proving the
robustness to data perturbations; (3) Five independent
PSO optimizations were performed on the insulation
performance degradation fault, and the standard
deviation of the hyperparameter convergence value was
num_leaves=2.1, learning_rate=0.005, verifying the
stability of parameter search. The above experiments
show that the proposed method is highly consistent under
different random initializations and fault distributions.

4. Conclusions

A power equipment fault prediction and diagnosis model
was constructed based on LightGBM and PSO
algorithms. In view of the limitations of traditional
methods in dealing with high-dimensional nonlinear
features and sample imbalance, a systematic data
preprocessing, feature extraction and enhancement
strategy was designed. Through sliding window
denoising, time series and frequency domain multi-scale
feature construction, combined with SMOTE sample
enhancement and category weight calibration, the
model's recognition ability for a few fault categories was
improved. The PSO algorithm realizes the automatic
tuning of LightGBM hyperparameters, significantly
enhancing the generalization performance and stability
of the model. The innovation of this study is reflected in
three aspects: (1) PSO is combined with LightGBM for
the first time to solve the problem of dynamic
optimization of hyperparameters in power equipment
fault prediction; (2) Through the dual mechanism of
SMOTE and category weight, the problem of fault
sample imbalance is systematically alleviated; (3) A time
series-aware data partitioning strategy is proposed, which
significantly reduces the risk of information leakage.
Experimental verification shows that the model performs
well in key indicators such as accuracy, recall rate, and
detection delay time, and has strong real-time fault
recognition capabilities. The method still has limitations:
(1) Feature engineering relies on domain knowledge, and
self-supervised learning can be explored in the future to
reduce manual design; (2) Model complexity may affect
generalization ability under extreme multi-working
conditions, and a meta-learning framework needs to be
introduced. Although the method in this paper shows
significant advantages in comparison with CNN, LSTM
and Transformer, future research can be further extended
to other time series-specific models. The causal
convolution structure of TCN may be more suitable for
capturing the temporal dependency of device states,
while the sparse attention mechanism of Informer may
be more efficient in processing long sequence data. Such
comparative experiments will help verify the
generalization ability of the method in this paper in a
wider model spectrum and provide a more
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comprehensive technical selection reference for power
equipment fault prediction.
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