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Abstract. Power electronic-based loads are increasingly used 

in modern distribution systems. Such appliances inject harmonic 

currents into the power system and thus, they can have serious 

impacts on the power quality of the system. Therefore, it is 

necessary to find suitable frequency domain models of these loads 

to predict their contribution to the harmonic voltage levels. So far, 

various modeling approaches have been proposed in the relevant 

literature. Usually, they are parameterized based on laboratory 

measurements. In this paper, however, a circuit-based time domain 

model of a Compact Fluorescent Lamp (CFL) is implemented in 

MATLAB®/Simulink® and used for the parameter identification 

of three different frequency domain models. These models usually 

rely on a linearization of their emission characteristic and 

therefore, it is required to choose an appropriate reference voltage. 

As the supply voltage in real distribution systems is already 

distorted, the commonly made assumption of a sinusoidal 

reference voltage may increase the inaccuracy of models for 

strongly non-linear devices. Therefore, different reference points 

for the model parameterization are specified and their impact on 

the model performance under typical voltage distortions is studied. 
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1. Introduction 

 
The number of power electronic-based loads such as plug-

in electric vehicles, photovoltaic inverters, and lamps with 

electronic ballast in modern distribution networks is 

continuously increasing. These electrical appliances are 

loads with a nonlinear voltage-current characteristic. 

Therefore, even if the supply voltage at the connection point 

represents a purely sinusoidal waveform, the current 

flowing through the load is distorted and thus, its waveform 

is not purely sinusoidal. Furthermore, the distorted current 

causes in turn a distortion of the voltage due to a voltage 

drop over the harmonic network impedance [1].  

With the widespread use of nonlinear loads in distribution 

networks, it is becoming more important to model the 

characteristics of harmonic generation in order to perform 

harmonic studies in real low voltage (LV) networks. 

Considering the computational performance to determine 

the harmonic contents of a nonlinear load, a harmonic 

analysis based on frequency domain models is preferable 

to a harmonic analysis based on time-domain models [2]. 

In literature different models for a harmonic analysis of a 

nonlinear load in frequency-domain are described [3], [4]. 

Among these models, a constant current source model, an 

uncoupled Norton equivalent model and a coupled Norton 

equivalent model are introduced as the commonly 

preferred models [5]. The constant current source model is 

often chosen for large-scale network simulations due to its 

simplicity. However, due to the dependency of harmonic 

currents on the harmonic voltage, the other two models 

based on a Norton equivalent are expected to give more 

accurate results. The reason is that these models 

additionally comprise a harmonic admittance, which 

accounts for the voltage dependency of the harmonic 

emission [6], [7]. All of these frequency domain models 

consist of a set of parameters, which can be derived from 

either measurements or time-domain simulations of the 

respective nonlinear load. The accuracy of these models 

depends both on the nonlinearity of the load and the limits 

of the required linearization [8]. Usually, a sinusoidal 

voltage is used as reference point, but it is also possible to 

use other voltage waveforms for the linearization. 

Therefore, it is necessary to evaluate the impact of 

different reference points on the model accuracy [2].  

In this paper, a Compact Fluorescent Lamp (CFL) is 

selected as an example of a strongly nonlinear load and 

modeled by using three different frequency domain 

models. The harmonic characterization of the CFL is 

carried out by using time-domain simulations under 

different voltage conditions in MATLAB®/Simulink®. 

Then, the parameters of the frequency domain models of 

the nonlinear load are identified. The harmonic output 

results of the models are examined for the same voltage 

conditions. Finally, a comparison of these models is made 

by determining the relative errors, which illustrate the 

limitations of the models and their linearization. A main 

advantage of the simulation-based approach compared to 

the measurement-based one is that the results are not 

affected by uncertainties of the measurement equipment. 
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2. Frequency Domain Models 

 
In this section, a detailed description of the three mentioned 

frequency domain models is given. 
 

A. Constant Current Source Model 

 

The parameters of a constant current source model are 

obtained assuming that there is no change in the operating 

conditions of the supply system. It is necessary to define a 

reference voltage, i.e. a voltage source having a certain 

harmonic spectrum. This voltage source is then directly 

connected to the terminal of the nonlinear load and 

subsequently, a measurement or a simulation is performed. 

As a result, a harmonic spectrum of the resulting current 

waveform at the load terminal is obtained. This harmonic 

spectrum represents the parameters of the model. The 

constant current source model is a simple and easy 

applicable approach, but it may not provide sufficiently 

accurate results for a harmonic producing load under 

considerably changing voltage conditions [6].  
 

B. Uncoupled Norton Equivalent Model  

 

The uncoupled Norton equivalent model extends the 

constant current source model and considers the effects of 

changing voltage conditions on the harmonic currents by 

using admittances. Two parameters are required for each 

frequency of interest: a reference harmonic current and an 

impedance or admittance, respectively [6], [9], [13]. The 

reference harmonic current is determined in the same way 

as for the constant current source model. The harmonic 

admittance is calculated by performing a linearization 

around the reference voltage [10] [11]. In this paper, the 

linearization is based on Taylor’s theorem using the 

constant term and the first derivative (with the linear 

expression y=a∙∆x+𝒚𝟎: ∆y = 𝒚 − 𝒚𝟎 ,  ∆x = 𝒙 − 𝒙𝟎 ). The 

constant value represented by 𝒚𝟎 defines the reference point 

of the linearization. The linearization of a nonlinear 

function is illustrated in Fig. 1. 
 

Fig. 1.  Linearization of a nonlinear function [2] [17] 

 

The equations of the model are given in the following with 

(1) being the compact form of (2). All variables are complex 

phasors. 

 𝒊 = 𝒀 ∙ ∆𝒗 + 𝒊 ref (1) 
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𝒀 is the frequency coupling or harmonic admittance matrix 

and 𝒊 ref is the harmonic current vector at the reference 

point. As seen in (2), the model only considers the relation 

between harmonic voltages and currents of the same order, 

which corresponds to the diagonal of the shown harmonic 

admittance matrix [2], [17]. The complex admittance 𝑌h,h 

for harmonic order ℎ (ℎ = 1…𝑁) is calculated by (3).  
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C. Coupled Norton Equivalent Model 

 

In addition to the uncoupled Norton equivalent model, this 

model also considers the couplings between different 

harmonic orders, e.g. the effects of the fifth harmonic 

voltage on the third harmonic current. The equation of the 

model is given in (4). A particular element of 𝒀 is 

calculated according to (5). 
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As seen in (4), also the non-diagonal elements, i.e the 

admittances 𝒀𝐤,𝐡 with k ≠ 𝒉, are required for the 

parametrization of the coupled Norton equivalent model 

[6], [12]. 

 

3. Simulation Framework  
 

In this section, the necessary parameters and simulations 

of a time-domain model of a CFL are explained. 

 

A. Simulink Model of a CFL  

 

A compact fluorescent lamp (CFL) without power factor 

correction (PFC), which represents the commonly used 

circuit topology for CFLs as well as for many other low 

power devices, is selected as a nonlinear load. In order to 

develop the introduced frequency domain models, 

different voltage sources, namely an AC reference voltage 

source and an AC distorted voltage source, need to be 

defined in the Simulink model of the CFL load. While the 

former serves as a reference, the other is used for 

generating voltage deviations from that reference. The 

simulation model of the CFL is shown in Fig. 2 and the 

parameters of the CFL load are given in Table. 1. 

Nonlinear Function 
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Linear 

Approximation 
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Fig. 2.  Simulation model of the CFL (without PFC) 

Table I. – Parameters of the selected CFL Load Model [15] 

 

B. Simulation Procedure  

 

The simulation starts using a reference voltage source (with 

or without harmonic distortion) to determine the reference 

current required for the frequency domain models. In order 

to obtain the harmonic admittance matrix (linearization 

around the reference point) of the uncoupled and coupled 

Norton equivalent model, the following measurement 

procedure is carried out for each frequency of interest:  

 

 Superimpose a harmonic voltage on the reference 

voltage  

 Obtain the resulting current and voltage 

waveforms at the load terminal and select one 

cycle of each waveform (same time interval) 

 Compute harmonic spectrums of the waveforms 

 Determine the harmonic admittances of the Norton 

models and calculate their mean values 

 

The test of individual harmonic is performed according to 

the fingerprint method described in [16]. All simulations are 

carried out in discrete-time and the harmonic spectra of the 

resulting waveforms are computed using the FFT (Fast 

Fourier Transform) in MATLAB. 
 

4. Parameter Identification of the Models  
 

Two reference points are examined: a purely sinusoidal 

voltage waveform without harmonic distortion and a typical 

flat-top voltage waveform as given in Table II. Basis for the 

parametrization is the harmonic current spectrum of the 

CFL Simulink model at the reference voltage under steady-

state conditions. The results are plotted in Fig. 3 and Fig 4. 

 
Table II. – Harmonic spectrum of the selected flat-top voltage 

waveform (relative to the fundamental voltage) 
50 Hz: 325.3 Vpeak (230 rms) 100.00% 0.0° 

150 Hz (h3) 2.37% 0.0° 

250 Hz (h5) 1.66% 180.0° 

350 Hz (h7) 0.88% 0.0° 

450 Hz (h9) 0.24% 180.0° 

550 Hz (h11) 0.13% 180.0° 

650 Hz (h13) 0.24% 0.0° 

750 Hz (h15) 0.16% 180.0° 

Fig. 3.  Sinusoidal voltage: (a) current and voltage waveforms, 

(b) harmonic current spectrum (peak values) 

 

Fig. 4.  Flat-top voltage: (a) current and voltage waveforms, 

(b) harmonic current spectrum (peak values) 

 

The fingerprint graphs of the 3rd harmonic voltage and the 

corresponding 3rd harmonic current are shown exemplarily 

in Fig. 5 for both reference voltages. 

Fig. 5.  Fingerprint graphs of the individual 3rd harmonic voltages 

and currents (a) sinusoidal voltage, (b) flat-top voltage 

Rated power 24 W 

𝑹𝒔: Resistor of the rectifying stage 10 Ω 

𝑪𝒑: Smoothing capacitor 5.5 µF 

𝑹𝑳: Resistor of the inverter stage 3.98 kΩ 

   Harmonic Voltage

  max (V): 5.0 (%Uref)

   Harmonic Current

  , max Magnitude (A): 0.12

   Harmonic Voltage

  max (V): 5.0 (%Uref)

   Harmonic Current

  , max Magnitude (A): 0.11

(a) (b)
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The angle of the harmonic voltages is changed in steps of 

30°, while the magnitude is increased in five steps until the 

limit value of the respective harmonic voltage according to 

EN 50160 is reached. The admittances corresponding to the 

3rd harmonic current and a phase angle of 30° of the tested 

harmonic voltages are plotted for both reference points in 

Fig. 6. While the blue arrows indicate the admittances for 

the sinusoidal reference voltage, the magenta arrows 

represent the admittances for the flat-top reference voltage. 

The spread of the admittances in the complex plane is an 

indicator for the dependence of the admittances on the 

magnitude of the applied harmonic voltage. There is often 

also a strong dependence on the phase angle, which is, 

however, not shown here. The complex mean values of the 

admittances are used to parameterize the Norton models. 

 

For a comparative view of the admittances for odd 

harmonics (up to 25th order), a heat map showing the mean 

absolute values of the admittances along with their phase 

angles is given in Fig. 7 for the sinusoidal reference voltage 

and in Fig. 8 for the flat-top reference voltage, respectively. 

Both admittance matrices are qualitatively similar, but there 

are some slight quantitative differences, which occur mainly 

for the 9th harmonic voltage. This is shown in Fig. 9, which 

displays the absolute difference of the complex admittances 

according to (6). 

 

Fig. 7.  Mean absolute values of the admittances 𝑌k,h 

for the sinusoidal reference voltage 

 

 

Fig. 8.  Mean absolute values of the admittances 𝑌k,h 

for the flat-top reference voltage 

 

However, the differences regarding the non-linearity, i.e. 

the deviations of the admittances from their mean values, 

can be significantly higher for different reference points. 

This would result in different model accuracies even for 

the same magnitude of voltage change |∆𝑉 𝑘| with respect 

to the reference. 

 

  ∆ 𝑌 
 =  | 𝑌  Sinusoidal − 𝑌  Flat-top |         (6) 

Fig. 9.  Absolute difference of the complex admittances 

between corresponding values of the admittance matrices for 

both reference voltages 

 

5. Model Validation 
 

In order to evaluate the impact of the reference voltage on 

the model accuracy, the developed frequency domain 

models, which are based on sinusoidal and flat-top 

voltage, are compared with the time-domain model in 

Simulink. The validation process is divided into two parts. 

While the first part deals with the test of individual 

harmonic voltages, the second part analyzes the accuracy 

for typical voltage distortions comprising of various 

harmonic voltages. The model accuracy of the frequency 

domain models is characterized by the phase angle 

deviation (∆°), the relative magnitude error (RME) and the 

total relative error (TRE). With respect to a certain 

harmonic order k, the phase angle deviation is calculated 

by (7) and the relative magnitude error (RME) is 

calculated by (8).  
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Fig. 6.  Admittances corresponding to the 3rd harmonic current 

and a phase angle of 30° of the tested harmonics for both 

reference voltages (blue arrows: sinusoidal, magenta arrows: 

flat-top) 
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I
 k
est is the estimated value calculated from the results of a 

frequency domain model and I
 k
real  is the real value taken 

from the result of the Simulink model of the CFL. The total 

relative error (TRE) in (9) aggregates the error of several 

harmonic orders and is defined in a similar way as the THD. 

However, it is limited to the harmonic currents of the 3rd to 

the 9th order as only these orders are covered by the models.  

 

A. Individual Harmonics 

 

The model validation is performed for individual harmonics 

first. The test points are defined in a similar way as for the 

fingerprint analysis: The magnitude of each harmonic 

voltage (3rd to 9th order) is increased in 10 steps until its limit 

value (acc. to EN 50160) and the phase angle is varied in 

steps of 60°. The resulting 60 test points for each harmonic 

are superimposed on the flat-top reference voltage and the 

deviation to the time-domain simulation is calculated 

according to (7), (8) and (9) for each test point. The relative 

magnitude error (RME) and the phase angle deviation (∆°) 
are calculated exemplarily for the 3rd harmonic current. The 

results for the frequency domain models based on sinusoidal 

and flat-top voltage are shown in Fig. 10 and Fig. 11, 

respectively. The “X” axes indicate the tested cases (𝑰 k,h
 , 

h:  order of the superimposed harmonic voltage, k: order of 

the calculated harmonic current). Each Box-Whisker plot 

shows the variation of the results within the 60 test points. 

The inner limits of the colored rectangle correspond to the 

25th and 75th percentile, while the red line in the center 

represents the median. Besides, the outer black lines 

indicate the 5th and 95th percentile.  

 

Fig. 10. Model validation for the models based on the purely 

sinusoidal reference voltage using individual harmonics 

 

Fig. 11.  Model validation for the models based on the flat-top 

reference voltage using individual harmonics 

 

The coupled Norton model usually provides the best 

results. As expected, the uncoupled Norton model behaves 

identical to the coupled Norton model for the relation 

between harmonics of the same order, while it provides the 

same results as the constant current source model for 

harmonics of different order. Regarding the total relative 

error (TRE), the uncoupled Norton model shows a better 

accuracy than the constant current source model. 

However, the most important point is that the overall 

performance of the models based on flat-top reference 

voltage is better than that of those using sinusoidal 

reference voltage. As the models are intended to predict 

the harmonic levels in real networks, the used test points, 

which are derived from a typical flat-top voltage, represent 

a reasonable choice for the model comparison. 
 

B. Typical Voltage Distortions 

 

The model validation is additionally performed using a set 

of typical voltage distortions. For that purpose, a set of 

totally 36 flat-top waveforms is synthetically generated 

(Fig. 12a). The corresponding harmonic spectra are 

obtained after applying the Fourier transform. Due to the 

use of only odd harmonics up to the 9th order, the resulting 

waveforms differ from the original ones (Fig. 12b). 

Fig. 12. (a) Created  (b) Resulting flat-top voltage waveforms. 
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The relative magnitude error (RME) and the phase angle 

deviation (∆°  are exemplarily calculated for the 

3rd harmonic current. The total relative error (TRE) is 

calculated for the considered range of harmonic currents 

(odd harmonics up to the 9th order). Fig. 13 shows the results 

of the accuracy analysis for the frequency domain models 

using the same Box-Whisker representation as in Fig. 10.  
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Fig. 13.  Model validation of the frequency domain models using 

typical voltage distortions (RME(%  and (∆°  with 3rd harmonic); 

(a) sinusoidal reference voltage, (b) flat-top reference voltage. 

 

The coupled Norton model usually provides a better 

estimation of the harmonic current emission than the other 

models. Its accuracy is only slightly influenced by the used 

reference voltage. However, the accuracy of the constant 

current source model as well as the accuracy of the 

uncoupled Norton model can be significantly improved if 

they are parameterized using the flat-top reference voltage. 
 

6. Conclusion 

 

The paper compares the results of three commonly used 

frequency domain models for the estimation of the 

harmonic current emission of a CFL. The parameters of the 

frequency domain models are identified from the results of 

a time-domain simulation of a CFL Simulink® model by 

performing simulations under two reference voltages: a 

purely sinusoidal and a typical flat-top voltage waveform. 

 

The results of the model validation using individual 

harmonics show that the model accuracy depends strongly 

on the reference point used for the linearization. In typical 

LV networks it can be expected that the models based on 

flat-top reference voltage provide better results. This is also 

shown when typical voltage distortions are used for the 

validation. Particularly, the constant current source model 

and the uncoupled Norton model provide much better 

results if they are parameterized using the flat-top voltage. 

 

Further similar studies should be carried out for various 

nonlinear loads including different topologies, e.g. power 

supplies with a passive power factor correction. In addition, 

the parameters of the frequency domain models (especially 

for the constant current source and the uncoupled Norton 

model) can be determined under various flat-top reference 

voltage conditions for improving their accuracies. 
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