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Abstract. Climate change and global warming are 

problems need to be tackled on a priority basis. The 
greenhouse gas (GHG) emissions and air pollution must be 

reduced by 25% and 40% compared to 1990 levels in 2020 

and a reduction between 80% and 95% by 2050. To mitigate 

the GHG emissions, countries have adopted policies to use 

renewable energy sources. In the case of wind energy, the 

statistical analysis of wind data is a crucial stage for 

estimating the wind turbine energy output through the 

turbine performance. The Weibull distribution has been 

widely used in the recent years for describing the behavior 

of the wind speed and it can be treated as a probability 

density function. Herein, it is presented a new method for 

calculating the Weibull parameters of an infinity sum of 

Weibull distributions. This new method is based on a 

Hilbert space generated by scale and form factor as 

Fredholm integral. This new method is named Inversion of 

the Weibull Distribution in wind speed mixture (IWeD). 

The simulations results indicate that IWeD is adequate for 

estimating the Weibull parameters when the wind speed is 

composed of several Weibull distributions. 
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1. Introduction 

 
Global warming and climate change are problems that 

countries and, in general terms, the society must face [1-5]. 

The growing demand for fossil fuels and environmental 

concerns such as greenhouse gas (GHG) emissions and air 

pollution has raised attention to renewable resources 

available for attending the growing demand of energy. In 

1997, the most industrialized countries pledged, in Kyoto, 

to execute a set of measures to reduce GHG emissions by at 

least 5% on average between 2008 and 2012 compared to 

1990, entering into legal force in 2005. In this aspect, the 

Kyoto protocol proposes efficiently consume oil and coal, 

adopting renewable forms of energy. Industrialized 

countries should reduce their GHG emissions by 25% and 

40% compared to 1990 levels in 2020 and a reduction 

between 80% and 95% by 2050 [6].  

 

In order to reduce the dependence on fossil fuels for 

mitigating the GHG emissions, countries have adopted 

policies to use renewable energy sources. Energy plays an 

important role in economic development and well-being 

of the society. Wind energy is widely recognized as one of 

the most sustainable sources of electricity, with a potential 

energy generation up to 40 times the annual global 

electricity consumption [7]. The environmental policies in 

the European Union (EU) and many other countries favor 

the growth in the production of wind energy, being them 

important to study the wind properties and its potential in 

terms of electricity generation [8].   

 

Wind power is converted through a turbine, where the 

kinetic energy contained in the airflow turns the rotor of 

an electric generator. The wind turbine power output (𝑃𝑡), 
depends on the probability density function (PDF) of wind 

speed (𝑣). The wind turbine power output (𝑃𝑡), therefore, 

can be expressed by 

 

𝑃�̅� = ∫ 𝑃𝑡(𝑣)𝑓(𝑣)𝑑𝑣
∞

0

 (1) 

 

where 𝑃𝑡(𝑣) is the wind turbine power output as function 

of the wind speed (𝑣) and 𝑓(𝑣) is the PDF. 

 

Wind power in every region must be evaluated considering 

two main features: the potential and the feasibility [9]. The 

evaluation of the wind resource, the speed distribution and 

the average wind power must be studied among other 

parameters. Normally, several distributions of wind power 

are mixed and can generate differences in energy for 

turbines at nearby locations [10]. The statistical methods 

calculate the probability of the wind speed, and therefore, 

it is possible to determine the potential of the wind power.   

 

The statistical analysis of wind data is the most crucial step 

for estimating the PDF as (𝒗) function. This analysis 

determines the calculation of the available energy and the 
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wind turbine performance, which have a significative 

influence on the investment profitability. There are a lot of 

PDF for describing the behavior of wind data. The 

commonly used are beta function, lognormal function, 

Rayleigh and Weibull function [11-12].  

 

The most used probability density function (which 

describes the wind speed distribution) is the Weibull 

function [13-14]. This function is widely studied in other 

engineering areas, as well as medical, chemistry and 

physics. The wind conditions are such that considering a 

mixture of Weibull distribution is more suitable for the 

description in real world. Mixture Weibull distribution is 

more useful because it can also show heterogeneous wind 

regimes, in which there is evidence of multimodality [15-

16]. 

 

There are several numerical methods that can estimate the 

parameters of the Weibull distribution such as maximum 

likelihood estimation [17], least squares estimation [18], 

graphic method, moment method [19], power density 

method [20], among others.   

 

The Weibull function is defined by the following 

parameters, 

 

𝐹(𝑣) = 1 − 𝑒
−(
𝑣
𝜆
)
𝜅

  (2) 

 

Where 𝑭(𝒗) is the distribution function, κ is the shape factor 

and λ is the scaling factor. The parameters κ and λ are 

dimensionless parameters. The usual frequency distribution 

can be assumed and characterized by a shape factor of κ=2. 

In this case, this function is called Rayleigh function, which 

is a special distribution type of Weibull function. On real 

locations this parameter κ  may vary from 1.5 to 2.5. For 

offshore locations, this parameter is about 1.5. Over land 

this parameter reaches values up to 2.5 or more depending 

on the specific location.  

 

The Weibull distribution is defined by a probability density 

function, which is based on two factors named form factor 

κ and scale factor λ, since is the derivative respect to wind 

speed of 𝑭(𝒗). This probability density function is given by, 

 

𝑓(𝑣) =
𝜅

𝜆
(
𝑣

𝜆
)
𝜅−1

𝑒
−(
𝑣
𝜆
)
𝜅

  (3) 

 

Where 𝒇(𝒗) is the probability of measuring wind speed 𝒗. 

This measurement of wind speed is performed at one height, 

but it is also possible to get an estimation at different heights 

[9].  

 

The wind speed description is considered as a unique 

Weibull distribution. Sometimes, it is possible to take into 

account that the wind speed it is actually a sum of Weibull 

distributions. Equation (2) could be replaced by the 

following sum equation (3) that describes de probability of 

the wind speed. 

 

𝑔(𝑣) =  ∑𝑓(𝑣)𝑖

𝑛

𝑖=1

=∑(
𝜅𝑖
𝜆𝑖
) (
𝑣

𝜆𝑖
)
𝜅𝑖−1

𝑒
−(
𝑣
𝜆𝑖
)
𝜅𝑖𝑛

𝑖=1

 (4) 

 

The sum of Weibull distributions can be derived as 

Fredholm integral. This integral equation has the form as 

follow, 

 

𝑔(𝑟) =  ∬ 𝑓(𝑡, 𝑠)𝐾(𝑡, 𝑠, 𝑟)𝑑𝑡𝑑𝑠
𝑏

𝑎

 (5) 

 

In this integral equation, 𝒈(𝒓) and 𝑲(𝒕, 𝒔, 𝒓) are known 

functions and the integration endpoints ‘a’ end ‘b’ are 

finite or infinite. Normally, K is named kernel of the 

function, but it is a compact operator form a Banach space 

[21]. The goal is to solve for 𝑓(𝑡, 𝑠). For a continuous sum 

of Weibull distribution for any value of κ and λ, 𝐴(𝜅, 𝜆), 
equation (3) could be replaced by the following integral 

equation (5) through the equation (4). Then, equation 3 is 

transformed to, 

 

𝑔(𝑣) =  ∬ 𝐴(𝜅, 𝜆)
𝜅

𝜆
(
𝑣

𝜆
)
𝜅−1

𝑒−
(
𝑣
𝜆
)
𝜅

𝑑𝜅𝑑𝜆
∞

0

 (6) 

 

Any value of κ and λ, 𝐴(𝜅, 𝜆) is a matrix with the lengths 

of the two functions, which correspond with the 

parameters κ and λ. The equation (5) could be also 

transformed into discrete space through the inner product 

of the 𝐴(𝜅, 𝜆) and the integral matrix of Weibull function. 

This discrete space is defined by the Hilbert space, which 

simplify the mathematical treatment. Equation (4) could 

be used as a linear algebraic form described by equation 

(4). 

 

𝑔𝑣 = 𝐻𝑆 · 𝐴(𝜅, 𝜆) (7) 

 

 

 
Fig. 1. Aspect of the Hilbert space for two different 

positions in the dimension m, which is determined by wind 

speed. Top is the position for wind speed equal to 6 and 

bottom is the position for wind speed equal to 20. 

 

where 𝒈𝒗 is equal to [𝒈𝒗𝟏, 𝒈𝒗𝟐, …, 𝒈𝒗𝒎]T, the term A 

corresponds to a matrix of n x r elements of contribution 

of κ and λ factors, and HS, equation (8), is the m x n x r 

matrix corresponding of the Hilbert space defined by 

equation (5), 
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𝐻𝑆𝑚𝑛𝑟 =
𝜅𝑛
𝜆𝑟
(
𝑣𝑚
𝜆𝑟
)
𝜅𝑛−1

𝑒
−(
𝑣𝑚
𝜆𝑟
)
𝜅𝑛

 

 

(8) 

The equation (8) can be visualized in the Figure 1, where 

they are observed different positions of the dimension m 

corresponding to wind speed. In this case, wind speed equal 

to 6 and equal to 20 is shown. 

 

In general terms, the values of 𝐴(𝜅, 𝜆) can be estimated 

from experimental data and  𝑔𝑣 using the inversion of the 

equation (6). The discretization of Fredholm integral 

equations create discrete ill-posed problems. Therefore, this 

inversion is an ill-posed problem which was originally 

introduced by Hadamard [22]. Since the initial and 

boundary conditions are not well-defined, eventually strong 

vulnerability to noise and numerical instability have 

induced the emergence of different approaches. In order to 

face these problems, we can regard Levenberg−Marquardt 

statistical method [23] and SPLMOD [24]. All these 

approaches consider solutions with discrete values. Instead, 

other methods consider the solution as a distribution are 

CONTIN [25] maximum entropy (MaxEnt) [26] and more 

recently Proximal Algorithm for L1 combined with MaxEnt 

prior [27]. This problem can be solved using the widely 

known Tikhonov regularization method [28] for ill-posed 

problems and its formulation yield, 

 

min‖𝐻𝑆 · 𝐴 − 𝑔𝑣‖ + 𝛼𝑓(𝐴) (9) 

 

𝑓(𝐴) is the regularization function, and  balances the 

solution overfitting, such that the value of cost function is 

penalized on the basis of some prior assumptions. The value 

of  should be carefully chosen with respect to the noise 

level. The function of 𝑓(𝐴) imposes the solution form. Prior 

assumptions are included using 𝑓(𝐴), this function is 

represented with different forms, 

 

𝑓(𝐴) =

{
 

 
‖𝐿𝐴‖2

2

∑(
𝐴𝑖
∑𝐴𝑖

) log (
𝐴𝑖
∑𝐴𝑖

)

‖𝐴‖1

 (10) 

 

In this case, it is proposed the L1 norm of A as regularization 

function. This approach endeavors on the recovery of sparse 

solutions by using the l1-norm penalty function. The 

minimum of the equation (8) can be found by using very 

robust iterative thresholding algorithms (ISTAs) [29]. 

 

This method based on l1-norm promotes sparsity of the 

solutions 𝐴(𝜅, 𝜆). This implies assumption that the number 

of components is smaller as possible. Normally, ISTA 

algorithm itself has a rate of convergence proportional to 

1/𝑘, where 𝑘 is el number of iterations. Nesterov’s module 

is applied to the ISTA algorithm, as accelerated method for 

increasing up to 1/𝑘2 the rate of convergence [30-31]. This 

module was executed as the following sequence. Note that 

𝛾𝑘 ≤ 0. 

 

𝜆0 = 0, 𝜆𝑘 =
1 + √1 + 4𝜆𝑘−1

2

2
, 𝛾𝑘 =

1 − 𝜆𝑘
𝜆𝑘+1 

 (11) 

 

𝐴𝑘+1
′ = (1 − 𝛾𝑘)𝐴𝑘+1 + 𝛾𝑘𝐴𝑘 (12) 

 

 

This algorithm is called fast iterative shrinkage-

thresholding algorithm (FISTA) [32]. This algorithm is 

derived from ISTAs algorithms. 

 

In this work, we present the application of FISTA to 

decompose mixture of wind speed distributions. 

 

2. Methods 

 

The FISTA algorithm for decomposing wind speed 

mixture is evaluated in different simulations. This method 

is named Inversion of the Weibull Distribution in wind 

speed mixture (IWeD). The FISTA algorithm was 

implemented in MATLAB and all computations were performed 

on a windows 64-bit personal computer with an Intel i7-3770k 

@ 3.5 GHz and 24 GB of memory. A detailed description, 

including the MATLAB code, can be obtained upon 

request. 

 

Several simulated data sets where chosen to represent 

analytical situations. First, the set A consists of three speed 

wind Weibull distribution with scaled factor equal to 20 

and three different kappa values 1.5 (κ1), 3 (κ2) and 12 (κ3). 

Second, the set B consists of three speed wind Weibull 

distribution with shape factor equal to 10 and three 

different lambda values 5 (λ 1), 10 (λ 2) and 15 (λ3). Finally, 

the last data set C, consists of three speed wind Weibull 

distribution too. In this case, we have mixed both data set 

A and B. We have varying the values of kappa factor and 

lambda factor. The values of kappa factor are 1.5 (κ1), 3 

(κ2) and 12 (κ3) and the values of lambda factor are 5 (λ 1), 

10 (λ 2) and 15 (λ3). 

 

Figure 2 presents the sum of speed wind Weibull 

distribution of the set A for the first simulation, while 

Figure 3 shows the results obtained for the simulated 

experiment A consisting in the sum of three Speed wind 

Weibull distribution with values 1.5, 3 and 12 for κ1, κ2 

and κ3, when the inversion of the Weibull distribution 

(IWeD) is applied. 

 

 
 
Fig. 2.  Wind speed distribution composed by the sum of three 

Weibull distributions with scale factor equal to 20 and three 

different kappa values. These kappa values are 1.5, 3 and 12. 

 

For the second simulation, Figure 4 presents the sum of 

speed wind Weibull distribution for the set B. The result 

obtained is shown in the figure 5. This shows the results 

obtained on the simulated experiment B consisting in the 
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sum of three wind speed Weibull distribution with values 5, 

10 and 15 for λ 1, λ 2 and λ 3, when it is applied the inversion 

of the Weibull distribution (IWeD). 
 

 
Fig. 3.  Solution of the optimization release with FISTA algorithm. 

The kappa values detected are 1.5, 3 and 12. 

 

 
Fig. 4.  Speed wind distribution composes by the sum of three 

Weibull distribution with shape factor equal to 10 and three 

different lambda values. These lambda values are 5, 10 and 15. 

 

 
Fig. 5.  Solution of the optimization release with FISTA algorithm. 

The lambda values detected are 5, 10 and 15. 

 

 

 
Fig. 6. Wind speed distribution composes by the sum of 

three Weibull distribution with three shape factors equal to 

5, 10 and 15 and three different kappa values. These kappa 

values are 5, 10 and 15. 

 

 
Fig. 7. Solution of the optimization release with FISTA 

algorithm. The lambda values detected are 5, 10 and 15. The 

kappa values detected are 1.5, 3 and 12. 
 

 

Figure 6 presents the sum of speed wind Weibull 

distribution for the last simulation, set C. Figure 7 shows 

the results obtained on the simulated experiment C 

consisting in the sum of three wind speed Weibull 

distribution with values 1.5 (κ1), 3 (κ2) and 12 (κ3) for 

kappa factor and 5, 10 and 15 for λ 1, λ 2 and λ 3, for lambda 

factor, when it is applied the inversion of the Weibull 

distribution (IWeD). Figure 7 presents the values of the 

matrix 𝐴(𝜅, 𝜆). The solution can be interpreted as follows: 

the solution has three different mixture of winds speed, 

where it is possible to get the coordinates for values of 

kappa and lambda factors. The combination of these wind 

speeds obtains a solution with coordinates equal to 
(𝜅, 𝜆) = { (1.5,5), (3,10), (12,15)}. 

 
3.  Conclusion 
 

Two and three-parameter Weibull distribution is still in 

development and it is probably on wind mixture where it 

can enhance understanding. In fact, this problem is solved 

for two winds mixed at most. This is crucial to understand 

the behavior of the wind and his theoretical power 

estimation. For these reasons, this paper presents the 

IWeD method for the analysis of winds speed mixture. The 

proposed method does need sparsity promote, which must 

be carefully chosen. This method is adequate for 

deconvolved winds speed mixtures. Three data sets A, B 

and C have been simulated to show the potential of this 

approach, which is able to decompose the data sets mixture 

of wind speed distribution in its fundamental Weibull 

distributions. It is concluded that IWeD method is very 

suitable and efficient in order to estimate Weibull 

parameters for wind energy applications. 
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