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Abstract. The analysis and monitoring of Power Quality (PQ) 

are a research topic that has concerned with the scientific 

community in recent years. Several studies have been realized, in 

which, the object of study regard different approaches; the impact 

of deficient power supply, the effects caused by the charges in the 

system or methodologies for the detection, identification and 

classification of the phenomena that are referred as PQ 

disturbances, these problematics must be faced to counter the 

negative effects generated. In this paper is presented two 

approaches for the characterization and classification of various 

PQ disturbances, the techniques are involved in the application of 

subjects related to artificial intelligence; machine learning and 

deep learning, which in recent years have been used in different 

areas of study with a good performance for the applications 

developed. A comparative from these two techniques is 

performed; the first, machine learning technique, linear 

discriminant analysis, and the second technique proposed is a deep 

learning tool called autoencoder. The methodology is tested with 

a case study with real signals that contain variations in the voltage 

signal, the results from each technique are presented and the 

conclusions indicate the comparative realized. 

 

Keywords. Power Quality, Machine Learning, Deep 

Learning, Linear Discriminant Analysis, Autoencoder. 
 

1. Introduction 

 
The analysis and monitoring of Power Quality (PQ) 

represent a trending research topic that has being attracting 

the scientific community attention since the last decade [1]. 

In fact, the monitoring of the electrical power supply has 

become an important aspect in most electrical based 

application [2], the industrial systems represent an 

important field of study since the effects of a deficient 

power supply may impact on undesirable behaviours of the 

related electrical equipment and machinery. Different 

studies about (PQ) have been carried out about, the effects 

that deficient power supply could have on industrial 

systems. An example of this work is the study presented by 

L. Morales-Velazquez et al., where the effects caused by 

different electrical charges in the system is analysed in 

terms of detection and identification of disturbances. The 

aim of studies like this is to study the performance of 

different methodologies to obtain earlier and reliable 

detection to minimize potential failures and their 

propagation for electrical equipment protection [3]. The 

impact that the integration of renewable energy sources on 

the power system also have been studied, the increasing 

integration of renewable energy sources has led to new 

challenges on network planning step and operation [4].  

 

Indeed, a formal definition of PQ is provided by the IEEE 

std 1159 [5], referred to as the correct electrical power 

supply respecting a predefined amplitude and frequency. 

The norm describes also a set of undesired variations 

named as PQ disturbances. The standard includes a 

comprehensive list describing each of these disturbances 

such as voltage amplitude change, named sag in case of 

voltage decrease and swell in case of voltage increase. 

 

Thus, the detection and identification of such PQ 

disturbances are of major interest in recent years. The first 

step to face this challenge is the estimation of numerical 

features to characterise waveform. The selection of 

significant features allows the representation of different 

disturbances. The consideration of a reduced set of 

features to reach such capability is important to allow 

increased performances of the posterior detection and 

identification algorithms [6]. In this regard, several 

techniques and methodologies, mainly, focused on 

transformations as Wavelet based, Fourier or S transform 

as traditional methods [7]. Nevertheless, others 

approaches, as the work presented in [8], propose new PQ 

indexes based on higher order statistic measurements. 

Thus, it is required often specific work in the feature 

calculation and feature reduction stages for a proper 

classification of PQ disturbances, with the aim to avoid 

problems referred to the loss of information or limits in 

data variability. 
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In this regard, the introduction of artificial intelligence (AI) 

as new mathematical tools for data characterization and 

modelling, have resulted in different methodologies applied 

in a variety of applications, such as images processing, 

health care, business, robotics or control among others. 

Indeed, the use of AI based techniques contributes to 

improve models applied to predict the responses of systems 

under analysis in which classic methods are limited. In the 

context of AI, machine learning represents a subarea of AI 

that involves that the “machine” learns from a specific 

dataset a certain pattern or behaviour with the aim to predict 

or recognize patterns in a system. There are multiple 

techniques in this field, such as Support Vector Machines 

(SVM), k-Nearest Neighbours, Principal Component 

Analysis, Linear Discriminant Analysis (LDA) Decision 

Trees, etc. A representative work related with the use of 

such techniques is the one presented in [9], where a 

detection and classification of PQ disturbances is faced 

considering electrical signals considering PCA to reduce the 

dimension of the acquired features and the application of 

SVM for posterior classification. 

 

In this regard, deep learning represents a new trend that has 

been considered recently. Deep learning results from the 

limitations of classical neural network structures trained by 

means of backpropagation technique in font of multiple 

patterns. Unlike machine learning, deep learning deals with 

more complex models to describe system behaviours, this 

means that deep learning is supported by high dimensional 

structures capable to deal with highly nonlinear responses 

and complex pattern extraction scenarios. In consequence, 

deep learning models are able to face feature calculation and 

feature reduction while most machine learning techniques 

require two stages process. Related works that take 

advantage of the characteristics that deep learning offers in 

terms of PQ analysis and monitoring is the work presented 

in [10], in which a method based on deep convolutional 

neural networks is used to detect and classify PQ 

disturbances. The work uses multiple units to extract the 

features and reduce the overfitting, establishing a 

comparative with other related works based on traditional 

methods. Also, in [11], it is presented a singular spectrum 

analysis and fast discrete curvelet transform, the levels 

generated from the signals under analysis are used as 

features and the classification stage involves the use of a 

deep convolutional neural network and it is compared with 

SVM classifiers used in others methods existing. 

 

Considering such current works in the field, the aim of this 

work lies in the proposal of a methodology for monitoring 

and diagnosis of PQ disturbances based on autoencoder and 

NN. The methodology faces the detection and 

identification, and is validated in front of the ideal electrical 

signal condition and four distinct PQ disturbances, that is, 

sag, swell, harmonics and fluctuations. The contribution of 

the work is the analysis of performance from a deep learning 

technique and the comparison with classic methodologies 

for PQ monitoring. The benefits and advantages of deep 

learning techniques have not been discussed widely and this 

work proposes such analysis in terms of detection and 

identification performances. The proposed methodology is 

validated considering a set of synthetic signals and 

experimental data. 

2. Power Quality disturbances 
 

As aforementioned, any deviation from the ideal voltage 

or current can be defined as a PQ disturbance [12]. In this 

regard, equation (1) represents a pure waveform of the 

electrical signal: 

 𝑉(𝑡) = 𝑉𝑚 sin(𝜔𝑡 + 𝜑) (1)  

 

where 𝑉(𝑡) is the sinusoidal voltage, 𝑉𝑚 is the amplitude 

of the signal, 𝜔 is the angular frequency y 𝜑 is the phase 

of the signal.  

 

According to the detailed description of the IEEE Std 1159 

in regard with the variations of PQ, in the category of 

short-duration root-mean-square variations, it is included 

the terms sag and swell. The definitions for these terms 

define a sag as a decrease in rms voltage which is between 

0.1 pu (per unit), and 0.9 pu, and swell as the increases in 

rms voltage above 1.1 pu, in both cases the durations range 

from 0.5 cycles to 1 min. Another defined disturbance is 

related with sinusoidal voltages or currents having 

frequencies that are integer multiples of the operation 

frequency of the supply system, this type of disturbances 

is referred as harmonics and is included in the category of 

waveform distortion. Finally, voltage fluctuations are 

systematic variations of the voltage envelope or a series of 

random voltage changes, the magnitude of which does not 

normally exceed the voltage ranges of 0.95 pu to 1.05 pu 

according to [5]. 

 

Complete information about the disturbances and images 

of these will be presented in the final version of the paper.  

 

3. Feature Reduction Techniques 

 

A. Linear Discriminant Analysis 

 

Classic monitoring strategies consider stages of feature 

calculation, feature selection and feature reduction. The 

feature calculation is a stage where a high dimensional set 

of features is estimated for pattern characterization. Most 

of the features estimated in this stage present correlated 

and non-useful information, which minimizes the 

performance of the overall monitoring methodology. In 

order to minimize such effects, a feature reduction 

technique is considered to reduce an original high 

dimensional feature set into a reduced dimensional space 

emphasizing non-correlated and significant information. 

In this regard, the LDA is considered as a useful technique 

to face multi-class problems. LDA is a supervised 

technique that aims to find a new projection by 

maximizing linear separation among the considered 

classes. The most discriminative and representative 

information is considered due to LDA attempts to 

maximize the linear separation between different classes 

[13].   

 

B. Autoencoder 

 

The autoencoder technique is a neural network based 

structure trained to replicate its input at its output. The 

training of an autoencoder is unsupervised, that is, no 
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labeled data is required. The training process is still based 

on the optimization of a cost function. The cost function 

measures the error between the input and its resulting 

reconstruction at the output. The autoencoder structure is 

composed of an encoder and a decoder, and can have 

multiple layers. Traditionally, autoencoder was used for 

dimensionality reduction or feature extraction [14]. Fig. 1 

shows the structure of an autoencoder. The basic 

autoencoder structure consists of three main components, an 

encoder, a hidden layer and a decoder, the encoder is the 

input layer, in the hidden size is the representation of the 

input in a dimension minor to the input layer, the decoder 

takes the information compressed and return to the original 

dimension that was in the input layer.  

 

 
Fig. 1. Representation of an autoencoder structure. 

Several autoencoders can be used for the intention to reduce 

o compress the input data in several steps, passing from a 

high dimensionality to a low dimensionality without losing 

the characteristic of features for the input with major 

relevance to characterizing our data. This scheme is named 

as stacked autoencoders and consists of the take the encoder 

part from the autoencoders used to compress the data or 

called for the intention of this work, feature extraction and 

feature reduction. A representation of stacked autoencoders 

is shown in Fig. 2. 
 

 
Fig. 2. Three stacked autoencoders. 

 

A discussion about the related works concerning with the 

use of LDA and autoencoder will be described in this part 

of the section with the intention to show theoretical aspects 

and limitations. 

 

4. Methodology 

 
The proposed methodology includes feature extraction, 

feature reduction and classification stages applied to PQ 

disturbances as shown in the flow chart of Fig. 3. The 

methodology includes a neural network for final 

classification. The methodology will be compared with the 

classical approach based on LDA+NN, that is, considering 

the use of LDA for feature reduction.  

 

 
Fig. 3. Flow chart of the proposed methodology using a deep 

learning approach for extract and reduced features in PQ 

disturbances detection and classification. 

The first stage of the proposed methodology includes the 

consideration of the electrical signals, including synthetic 

and experimental ones in this work. An initial set of 

synthetic signals containing the disturbances under 

analysis is, first, considered, and then, the evaluation with 

signals from an experimental database that contains 

multiple phenomena is evaluated. 

 

Once the representative signals are generated, the next 

stage in the flow chart correspond to the feature 

calculation. In this regard, a set of statistical time domain-

based is used. The statistical set is shown in Table I. 

 
Table I – Set of statistical time domain-based features  

Indicator Equation 

Mean 
 

�̅� =
1

𝑛
∙∑ |𝑥𝑘|

𝑛

𝑘=1
 (2)  

 

Maximum 

Value 
 �̂� = 𝑚𝑎𝑥(𝑥) (3)  

 

Root Mean 

Square 

 

𝑅𝑀𝑆 = √
1

𝑛
∙∑ (𝑥𝑘)

2
𝑛

𝑘=1
 (4)  

 

Square root 

mean 

 
𝑆𝑅𝑀 = (

1

𝑛
∙∑ √|𝑥𝑘|

𝑛

𝑘=1
)
2

 (5)  
 

Deviation 

Standard 

 

𝜎 = √
1

𝑛
∙∑ (𝑥𝑘 − �̅�)2

𝑛

𝑘=1
 (6)  

 

Variance 
 

𝜎2 =
1

𝑛
∙∑ (𝑥𝑘 − �̅�)2

𝑛

𝑘=1
 (7)  

 

RMS 

Shape 

Factor 

 
𝑆𝐹𝑅𝑀𝑆 =

𝑅𝑀𝑆

1
𝑛
∙ ∑ |𝑥𝑘|

𝑛
𝑘=1

 (8)  

 

SRM 

Shape 

Factor 

 
𝑆𝐹𝑆𝑅𝑀 =

𝑆𝑅𝑀

1
𝑛
∙ ∑ |𝑥𝑘|

𝑛
𝑘=1

 (9)  

 

Crest 

Factor 

 
𝐶𝐹 =

�̅�

𝑅𝑀𝑆
 (10)  

 

Latitude 

Factor 

 
𝐿𝐹 =

�̅�

𝑆𝑅𝑀
 (11)  

 

Impulse 

Factor 

 
𝐼𝐹 =

�̅�

1
𝑛
∙ ∑ |𝑥𝑘|

𝑛
𝑘=1

 (12)  

 

Skewness 
 

𝑆𝑘 =
𝐸[(𝑥𝑘 − �̅�)3]

𝜎3
 (13)  

 

Kurtosis 
 

𝑘𝑢 =
𝐸[(𝑥𝑘 − �̅�)4]

𝜎4
 (14)  

 

5° Moment 
 

5𝑡ℎ𝑀 =
𝐸[(𝑥𝑘 − �̅�)5]

𝜎5
 (15)  

 

6° Moment 
 

6𝑡ℎ𝑀 =
𝐸[(𝑥𝑘 − �̅�)6]

𝜎6
 (16)  

 

 

Once the features are calculated, the feature reduction 

stage follows. In this stage, from the 15 statistical time 
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based-domain features, a new set with the most 

representative data is obtained. To achieve this, the Fischer 

score is used, which provides a value or punctuation of the 

features that are most representative for each class referred 

to the normal or ideal condition.  
 

With the new set of selected features, the LDA or feature 

reduction stage follows. In this stage, first, the use of 

autoencoder and the use of LDA is included. For the case of 

autoencoder, there are two ways to face the flow chart, in 

the first one the input of the autoencoder is the signal and, 

in the second, the input is the set of statistical time domain 

features. Thus, in the first way, the autoencoder is used as 

feature extraction, feature selection and feature reduction, 

and in the second way, the set of statistical indicators the 

autoencoder only works as feature selection and feature 

reduction. In this paper, the two considerations are 

considered and compared. 

 

The number of autoencoders layers is five, following the 

sizes indicated in Table II. 
 

Table II – Number of neurons in the hidden layer for each 

autoencoder. 

No. of 

autoencoder 

No. of neurons in 

the hidden layer 

1 500 

2 100 

3 50 

4 10 

5 2 

 

For all the autoencoders the number of epochs established 

is 500, and the hyperparameters as L2Weight 

Regularization, Sparsity Proportion and Sparsity 

Regularization were established in 0.00001, 0.01 and 

0.00001 respectively. It is important to mention that only 

the encoder part of the autoencoders is used. The selection 

of the values of the hyperparameters is inspired by other 

works related to the use of autoencoders [15]. 

 

The last part of the proposed flow chart is the classification. 

In this proposed methodology a neural network with 

SoftMax function is used to perform the classification task, 

the parameters of the network are: 100 number of epochs 

and 10 number of neurons in the hidden layer. As 

aforementioned, the activation function is SoftMax, because 

is the most used to classification task. In the case of 

autoencoder, as the autoencoder is a neural network, then to 

the structure of the encoders stacked only is added one more 

layer to the end, the classification layer based in SoftMax 

function.  
 

5. Experimental Set Up 

 

As aforementioned the first stage of the methodology is 

based on the generation of representative electricals signals. 

The electrical signals are generated using Matlab platform. 

These signals simulate the five conditions or classes under 

analysis in this work: the ideal voltage waveform, sag, 

swell, harmonics and fluctuations. Additionally, to the ideal 

signals, noise has been added to simulate real conditions. 

The level of added noise is 50 dB to each one of the 

conditions. Fig. 4 show the resulting signals generated to 

simulate the four PQ disturbances. 

 

 
Fig. 4. Electrical signals generated to represent the four PQ 

disturbances under analysis. 

Once generated the signals, the set of statistical time 

domain-based is calculated. Then, the matrix generated for 

the calculation of the new statistical set about the synthetic 

signals is generated computing LDA. The new matrix has 

then a reduced dimensional space, in which the classes are 

known and represented in a 2-dimensional space. 

 

Once obtained the representation for the two techniques, a 

signal obtained from a study case is tested in the two 

approaches. In the case of machine learning based 

approach, the procedure is the same, the set of statistical 

time based-domain is calculated and selected the most 

representatives and, later, after LDA projection is 

calculated. The projection of these new signals is 

superposed over the classification carried out with the 

synthetic signals, this indicates if the signals contain a PQ 

disturbance or, otherwise, there are in the normal/ideal 

condition 

 

This information will be completed in the final version of 

the paper.  

 

6. Results and Discussions 
 

The 2-dimensional projection resulting from the feature 

reduction stage and the posterior projection of the 

classification as qualitative analysis. Also, it is pretended 

to show the accuracy of the classification from a 

quantitative analysis point of view. The projection of the 

LDA with the know classes is shown in Fig. 5. 

 

 

 
Fig. 5. LDA projection of the synthetic signals. 
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7. Conclusions 
 

This information will be completed in the final version of 

the paper. 
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