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Abstract  

In the 2020s, in line with international trends, a rapidly increasing 

photovoltaic penetration is expected in Hungary. These 

decentralized electricity sources are typically connected to the low 

and medium voltage distribution network, affecting their 

operation. The spread of different output power connection 

demands the development of the network infrastructure. The 

development directions and opportunities can be examined with 

software simulation, so the formulation of reference networks is 

required. In order to get valid reference networks, clustering of real 

feeders can be a solution. When the clusters and the values of the 

variables that describe the clusters are defined, the networks can 

be implemented in simulation software. In this paper, the 

clustering process of Hungarian distribution networks, the 

determination of the optimal cluster number, and the reference 

networks are all presented, on which the effects of the growing 

photovoltaic penetration in the Hungarian medium voltage 

distribution network system can be simulated. 
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1. Introduction 

In Hungary, in line with international trends, photovoltaic 

penetration quickly increases. Photovoltaic systems, 

considering their output power, belong to the household size 

small power plant and small power plant range. Due to the 

change of the renewable support system in 2016, the 

number of applications for licenses for the installation of 

small photovoltaic power plants increased significantly. As 

a result, the regulator in Hungary gave permission to the 

construction and installation of approximately 800 MWp 

photovoltaic systems, for the whole sector, in 2019. In the 

next years, the number of small power plants with 500 kWp 

output power is expected to increase. As a result of these 

investments, the hierarchical, centralized structure of the 

electricity network will be increasingly decentralized, 

typically at the low and medium voltage level [1].  

In order that the distribution networks approximate the 

smart grid structure, their development is necessary. To 

determine the directions (and opportunities) of electricity 

network development and to answer the emerging 

questions, it is necessary to model these distribution 

networks. To perform simulation, the software 

implementation of networks is recommended. [2–4].  

Since there is a significant number of various topology 

medium voltage networks in Hungary, their software 

implementation and a large range of simulations is a 

powerful time and resource absorbing exercise. It is 

recommended to construct reference networks with which 

the real system can be described well. Such reference 

networks can be created by the clustering real networks. 

These distribution network models can be approximated 

more precisely than in the mathematical models used in 

the literature. Thus, real decision situations can be handled 

by the generated reference networks.  

2. Data analysis techniques 

Data mining techniques use numerous statistics-derived 

algorithms. Compared to statistics, it is generally 

presumed that a large set of relevant data is available, but 

the method of analysis used to get valuable information is 

unpredictable. One of the biggest questions of data mining 

is which methods can be used on large data sets and how 

these tools are used. 

After reviewing studies in which electricity network 

topologies are grouped, it can be stated that for 

classification, k-means (and k-medoids) clustering and 

hierarchical clustering are the most frequently used 

techniques [2–4]. In this study, hierarchical agglomerative 

clustering is used for the formulation of medium voltage 

representative networks. 
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2.1 Hierarchical agglomerative clustering 

In hierarchical clustering, clusters are determined with the 

relative Euclidean distance between the examined data 

points. The main concept is that a selected item is more tied 

to a closer data point that a further one. The name of the 

clustering method refers to the process of data processing. 

Within the group of hierarchical clustering algorithms, 

depending on the direction of the clustering process, two 

different algorithms can be identified: (i) agglomerative 

clustering and (ii) divisive clustering [2–4]. 

Hierarchical agglomerative clustering is a federation-based 

algorithm. At the beginning of the process, all the data 

points (n) are considered as a single cluster. In the next step, 

each of them is moved to a larger cluster. The shutdown 

condition of the algorithm is that all the elements are in the 

same (root) cluster. Agglomerative clustering is looking for 

new clusters based on the previously generated ones. A 

dendrogram can be used as the graphical representation of 

the results. The tree-structured dendrogram can be cut off at 

any level, allowing each cluster to be examined at the cut-

off level. By determining the optimal number of clusters, it 

is possible to determine the level of the tree where it should 

be interrupted. As a result of this interruption, the required 

clusters are already available. The step number of clustering 

algorithms is relatively high; it is around the size of the input 

data array to the third power (~n3). In the case of large input 

data sets, this algorithm may be slow [2–4]. 

The advantage of this algorithm is that it corrects the 

distance errors between the local minimum and the centre 

of the clusters. Besides this advantage, there are many 

disadvantages too. The greatest one is the irrevocability of 

decisions. If two clusters are merged in one step, they 

cannot be divided again later, since the new cluster is used 

in the next step of the algorithm. The merging steps are 

considered critical, because incomplete mergers result in 

incorrect clustering [2–4]. 

In this paper, 1769 selected Hungarian medium voltage 

distribution feeders are examined and clustered with 

hierarchical agglomerative clustering (one of the most 

frequently used). The examined networks can be found in 

three different distribution system operator areas.  

3. Clustering method 

In this study, hierarchical agglomerative clustering is used. 

In MINITAB 18.0 [5], the agglomerative clustering method 

is based on the complete linkage method (also called the 

furthest neighbour method). In this method the distance 

between two clusters is the maximum distance between an 

observation (feeder or data point) in one cluster and an 

observation (feeder or data point) in the other cluster [5]. 

3.1 Input network data 

The examined networks are handled as graphs. They are 

characterized by mathematical and electrical parameters, 

such as  

v1 - number of switches,  

v2 - number of transformers,  

v3 - average impedance of feeders [Ω],  

v4 - total node number, 

v5 - average node degree,  

v6 - characteristic impedance [Ω],  

v7 - (impedance) diameter of the feeders [Ω],  

v8 - betweenness centrality [Ω]. 

Since the range of these parameters is fairly different, their 

normalization had to be done. On these modified data 

series, correlation analysis also has been done. 

3.2 Principal component analysis 

The network analysis is a procedure in which more than 

two variables are taken into account. To examine multiple 

variables on a large data array and to handle the dataset as 

a compact unit is complicated. In this case, it is 

recommended to decrease the number of variables, 

without losing information [6][7].  

A possible way to reduce the number of variables is the 

principal component analysis (PCA). The task of the PCA 

is to describe the data array with fewer factors than the 

number of variables so that the factors contain most of the 

original information [6][7]. 

Another target is to describe the nature of the correlation 

between the numerous variables with the factors. Since in 

this study the number of variables is 8 and treating them 

as a unit is a difficult task, it is recommended to carry out. 

To get the optimal number and the values of the main 

components, statistical software (MINITAB 18.0) was 

used [6]. In this software at the first step of the PCA, the 

optimal number of the main components was determined. 

The cumulative proportion of the first 3 eigenvalues is 

0.95. In this case, the loss of information is approx. 5%. 

This means that the feeders can be characterized well with 

the first 3 principal components. The scree-plot of the 

main components can be seen in Fig. 1, on which the 

“Elbow point” can also be observed [6][7]. 

Fig. 1: The scree plot for the eigenvalue of principal 

components for the feeders 

 

Fig. 2: The graphical representation the correlation analysis 
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The correlation between the PCA components can be seen 

in Fig. 2. The R- and P-values of the PCA correlation matrix 

are given in Table 1. 
 

Table 1: The R- and P-values of the PCA correlation matrix 

 PC1 PC2 PC3 

R-values of the principal components 

PC1 1.0000 -0.4769 -0.6957 

PC2 - 1.0000 -0.0351 

PC3 - - 1.0000 

P-values of the principal components 

PC1 1.0000 0.2321 0.0553 

PC2 - 1.0000 0.9343 

PC3 - - 1.0000 

 

In this matrix, the P-value is the Pearson correlation 

coefficient, which is used to examine the strength and 

direction of the linear relationship between two continuous 

variables. If the P-value is less than the significance level 

(0.05), the correlation is significant [6]. 

3.3 Determination of the optimal cluster number 

In the first step of agglomerative clustering, the cluster 

number is decided. The range in which the optimal cluster 

number is searched can be calculated with the number of 

data points. Therefore, the minimum number of clusters can 

be determined with Eq. 1, and the maximum number of 

clusters can be determined with Eq. 2. 

𝑀𝑚𝑖𝑛 = 1 + 1 = 2 (1) 

where Mmin is the minimal number of the clusters. 

𝑀𝑚𝑎𝑥 = ⌊√𝑁/2⌋ + 1 = ⌊√1769/2⌋ + 1 = 30 (2) 

where Mmax is the maximal number of the clusters, N is the 

number of examined data points. 

𝑀𝑜𝑝𝑡 = [𝑀𝑚𝑖𝑛; 𝑀𝑚𝑎𝑥] (3) 

In this paper, the optimal cluster number was investigated 

in the range defined by Eq. 3, their values are calculated 

with the simultaneous application of the Calinski-Harabasz, 

the Davies-Bouldin, the Silhouette, and the Gap validity 

indexes.  

3.3.1  Calinski-Harabasz criterion 

The Calinski-Harabasz (CH) index is defined by Eq. 4. 

𝐶𝐻 =
𝑆𝑆𝐵

𝑆𝑆𝑊

×
𝑁 − 𝑘

𝑘 − 1
 (4) 

where SSB is the overall between-cluster variance, SSW is the 

overall within-cluster variance, k is the number of clusters, 

and N is the number of observations.  

SSB is defined by Eq. 5. 

𝑆𝑆𝐵 = ∑ 𝑛𝑖 ∗ ‖𝑚𝑖 − 𝑚‖2

𝑘

𝑖=1

 (5) 

where k is the number of clusters, ni is the number of 

observations in the ith cluster, mi is the centroid of the ith 

cluster, m is the mean of the sample data, and ║mi-m║ is the 

Euclidean distance between the two vectors. 

SSW is defined as Eq. 6. 

𝑆𝑆𝑊 = ∑ ∑‖𝑥 − 𝑚𝑖‖
2

 

𝑥∈𝑐𝑖

𝑘

𝑖=1

 (6) 

where k is the number of clusters, x is a data point, ci is the 

ith cluster, mi is the centroid of the ith cluster, and ║x-mi║is 

the Euclidean distance between the two vectors.  

The optimal cluster number can be identified when the CH 

index has a global maximum. The objective function of the 

optimization problem based on CH validity index is 

defined with Eq. 7 [7][8]. 

𝑀𝑜𝑝𝑡 = max
𝑚∈[𝑀𝑚𝑖𝑛;𝑀𝑚𝑎𝑥]

𝐶𝐻𝑚 (7) 

where Mopt is the optimal number of clusters, m is the 

number of clusters. 

3.3.2  Davies-Bouldin criterion  

The Davies-Bouldin (DB) evaluation is an object 

consisting of sample data, clustering data, and DB criterion 

values used to evaluate the optimal number of clusters. 

This criterion is based on a ratio of within- and between-

cluster distances. The DB index can be defined with Eq. 8. 

𝐷𝐵 =
1

𝑘
∗ ∑ 𝑚𝑎𝑥𝑗≠𝑖{𝐷𝑖,𝑗}

𝑘

𝑖=1

 (8) 

where Di,j is the within-to-between cluster distance ratio 

for the ith and jth clusters. The mathematical description of 

this distance can be seen in Eq. 9 [6][8]. 

𝐷𝑖,𝑗 =
(𝑑𝑖 + 𝑑𝑗)

𝑑𝑖,𝑗

 (9) 

where 𝑑𝑖 is the average distance between each point i and 

the centroid of the ith cluster, 𝑑𝑗 is the average distance 

between each point and the centroid of the jth cluster, di,j is 

the Euclidean distance between the centroids of the ith and 

jth clusters. The worst-case for cluster i appears when Di,j 

has a global maximum at within-to-between cluster ratio. 

The optimal cluster number can be identified when the DB 

index has a global minimum. The objective function of the 

optimization problem based on DB validity index is 

defined by Eq. 10 [7][9]. 

𝑀𝑜𝑝𝑡 = min
𝑚∈[𝑀𝑚𝑖𝑛;𝑀𝑚𝑎𝑥]

𝐷𝐵𝑚 (10) 

where Mopt is the optimal number of clusters, m is the 

number of clusters. 

3.3.3  Silhouette criterion  

The value of the Silhouette criterion is a metric of how 

similar the examined point to the other points in the same 

cluster is, compared to points in other clusters. The 

Silhouette value (S) for the point i, can be defined by Eq. 

11.  

𝑆𝑖 =
(𝑏𝑖 + 𝑎𝑖)

max {𝑎𝑗 , 𝑏𝑖}
 (11) 

where ai is the average distance from point i to the other 

points of the cluster, bi is the minimum average distance 

from point i to the points in another cluster. The optimal 
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cluster number is then when S has a global maximum. The 

objective function of the optimization problem based on the 

Si validity index is defined by Eq. 12 [7][10][11]. 

𝑀𝑜𝑝𝑡 = max
𝑖=𝑚∈[𝑀𝑚𝑖𝑛;𝑀𝑚𝑎𝑥]

𝑆𝑖 (12) 

where Mopt is the optimal number of clusters, m is the 

number of clusters. 

3.3.4  Gap criterion 

Gap criterion is a graphical approach to cluster evaluation 

that involves plotting an error measurement versus several 

proposed numbers of clusters, locating the “elbow” which 

occurs at the highest decrease in error measurement. The 

gap value (G) is defined by Eq. 13 [7][12]. 

𝐺𝑛(𝑘) = 𝐸𝑛
∗{log(𝑊𝑘)} − log(𝑊𝑘) (13) 

where n is the sample size, k is the number of clusters being 

evaluated, and Wk is the pooled within-cluster dispersion 

measurement. 

𝑊𝑘 = ∑
1

2 ∗ 𝑛𝑟

∗ 𝐷𝑟

𝑘

𝑟=1

 (14) 

where nr is the number of data points in cluster r, and Dr is 

the sum of the pairwise distances for all points in cluster r, 

𝐸𝑛
∗{𝑙𝑜𝑔(𝑊𝑘)} is determined by Monte Carlo sampling from 

a reference distribution, and 𝑙𝑜𝑔(𝑊𝑘) is determined from 

the sample data [12]. The gap value defined for clustering 

solutions contains one cluster, used with a distance metric.  

The optimal cluster number arises when the local or global 

gap value is the largest, within a tolerance range. The 

objective function of the optimization problem based on Gi 

validity index is defined by Eq. 15 [7][12].  

𝑀𝑜𝑝𝑡 = 𝑚𝑎𝑥
𝑚∈[𝑀𝑚𝑖𝑛;𝑀𝑚𝑎𝑥]

𝐺𝑚 (15) 

where Mopt is the optimal number of clusters, m is the 

number of clusters. 

The determination of these index values is based on the 

built-in functions of MATLAB R2019b. The results of the 

four methods described above can be seen in Table 2. 
 

Table 2: The optimal cluster number determined with different 

validity indexes  

Validity index K-means 
Hierarchical  

agglomerative  

CH 5 7 

DB 6* 7* 

S 6* 6* 

G 5* 8* 

*Point with an obvious change 

 

Based on Eq. 3 the range where the optimal cluster is 

examined is quiet wide. Based on [7] the optimal cluster 

number can be found where the value of validity indexes 

has a global minimum or maximum, or in the case of the 

validity curves, where a point with an obvious change can 

be found. The optimal cluster number is determined with 

the simultaneous application of the most frequently used 

methods, which are k-means and hierarchical agglomerative 

clustering. Based on the results of the clustering (see in 

Table 2), the optimal cluster number is set to 6.  

The clustering algorithm was run 25 times to avoid local 

minima. The result of clustering was always the same. The 

clustering algorithm was convergent. 

4 Results 

The data processing method presented above is suitable for 

clustering networks that cover a larger area (three DSO are 

in Hungary), developing network topologies specific to the 

examined area. The dendrogram, as the graphical 

representation of the clustering, can be seen in Fig. 3, in 

which the clusters are marked with different colours. 

 

 

Fig. 3: Dendrogram: the result of the clustering - Complete 

linkage method with Euclidean distance 

 

Ideally, the clusters are described with the centroid of the 

clusters, but in most cases this is not a real data point. Then 

(in this paper too) the clusters can be described with the 

closest (the smallest distance) feeder to the centroid. The 

centroids and the nearest networks to the centroids can be 

seen in Fig. 4–6, marked with red and black cross markers, 

respectively.  
 

 

Fig. 4: The result of the clustering - score plot of the 1st and 2nd 

principal component of the feeders 
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Fig. 5: The result of the clustering - score plot of the 1st and 3rd 

principal component of the feeders 

 

 

Fig. 6: The result of the clustering - score plot of the 2nd and 3rd 

principal component of the feeders 

 

The numerical result of the clustering can be seen in Table 

3. Based on the parameters, it can be said that the examined 

networks have a varied size (node number) and topology. 

The largest cluster is Cluster 3, with 1145 feeders. This 

cluster covers approx. 65% of the examined area. Cluster 4 

and 5 are small clusters with 17 and 8 networks, 

respectively. The other three clusters (Cluster 1, 2 and 6) are 

medium size ones. 

Table 3: Final partition of clustering 
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Cluster 1 99 2.6775 0.1467 0.4131 

Cluster 2 336 11.2049 0.1636 0.3836 

Cluster 3 1145 53.9177 0.1866 0.6058 

Cluster 4 17 1.6827 0.2947 0.4927 

Cluster 5 8 0.3772 0.2070 0.3630 

Cluster 6 164 8.5243 0.2110 0.5964 

 

The values of the variables characterizing the reference 

networks in the clusters can be seen in Table 4. 

 

Table 4: The value of parameters of reference networks 
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v1 67.00 61.00 3.00 0.00 106.00 0.00 

v2 60.00 40.00 0.00 13.00 76.00 14.00 

v3 0.28 0.28 1.59 0.07 0.32 0.58 

v4 150.00 130.00 7.00 26.00 223.00 2.00 

v5 1.99 1.98 1.71 1.92 1.99 1.00 

v6 8.14 4.99 4.88 0.35 9.78 0.58 

v7 39.29k 22.94k 19.5k 6.89k 48.85k 3.42k 

v8 1451.77 712.20 5.00 100.00 2535.76 0.00 

 

The graphical representation of the reference networks 

representing the clusters can be seen in Fig. 7–12. 

Network NC1 is a medium size, 22 kV, mainly overhead 

(96.6% overhead lines) medium voltage network, placed 

in a rural area.  

Network NC2 in Cluster 2 is similar to NC1 (99.2% 

overhead lines), the difference between the networks 

comes from nature and the size of the supplied are. In NC2 

there are more branches covering a larger area, the graph 

of the network is more centralized.  

Network NC3 is a medium sized, 22 kV, underground 

(100%) medium voltage network, situated in an urban 

area. The network can be powered by switching on either 

of the endpoint interruptions.  

Network NC4 in Cluster 4 is similar to NC3 (in NC4 80% 

overhead lines), the difference between the two feeders 

come from the size and the nature of the supplied area. 

With this kind of network (typically) large consumers are 

supplied.  

Network NC5 is a large, 22 kV, mainly overhead (94.1% 

overhead lines) medium voltage network, placed in a 

suburban area. In the graph, there are two branches where 

a loop (ring) can be created by switching on an 

interruption.  

Network NC6 in Cluster 6 is a 3.4 km long 22 kV 

underground cable with which large consumers are 

supplied.  

5 Conclusion 

In this paper, a network clustering method on Hungarian 

medium voltage feeders has been presented, which is 

suitable for processing a larger amount of the data array. 

Based on the international literature on the creation of 

reference networks, PCA and agglomerative hierarchical 

clustering were used together. In the first step, the 

dimension of the examination space was decreased from 8 

to 3 (using PCA), and the feeders were clustered in this 3D 

PCA component space. As the first step of the clustering, 

the optimal cluster number is described using the Calinski-

Harabasz, Davies-Bouldin, Silhouette and Gap criterions. 

The optimal cluster number was found to be 6. The results 

of the clustering are presented in Section 4. Because of the 

variety of topologies, diverse clusters have been created.  
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Fig. 7: The topological representation of 

Cluster 1 (NC1) 

 

Fig. 8: The topological representation of 

Cluster 2 (NC2) 

 

Fig. 9: The topological representation of 

Cluster 3 (NC3) 

 
Fig. 10: The topological representation of 

Cluster 4 (NC4) 

 

Fig. 11: The topological representation of 

Cluster 5 (NC5) 

 

 
Fig. 12: The topological representation of 

Cluster 6 (NC6) 

The data processing method presented in the present paper 

is suitable for clustering networks that cover a larger area 

(country), developing network topologies specific to the 

examined area. 

The method created here to generate medium voltage 

distribution network models can be used to simulate the 

effects of the growing photovoltaic penetration in the 

Hungarian medium voltage distribution network system. 

The results can also help to model the voltage and power 

changing effects on these networks. The effects of the 

growing electrical car and energy storage penetration and 

the opportunities for smart grid development can also be 

simulated. 
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