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Abstract. The need for improving the energy efficiency of 

existing buildings has driven to the implementation of building 

energy management systems (BEMS) that can help facilities 

manager to discover and identify problems that may cause energy 

wastage or affect to occupants’ comfort. Modern data-driven fault 

detection and diagnosis (FDD) make use of the data collected by 

the building BEMS to provide high accuracy in the revelation of 

heating, ventilation and air-conditioning (HVAC) system faults. 

However, these methods need a large amount of faulty data 

samples during the training, which is an uncommon situation in 

the real world. The main focus of this paper is to present a 

methodology to detect faults when the number of faulty samples is 

low. For this purpose, a regression-based methodology based on 

an adaptative neuro-fuzzy inference system (ANFIS) chiller model 

is developed using the data collected from a real use case. The 

model presents good results, that can be used for benchmarking 

the machine operation and detect the abnormal operation states. 
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1. Introduction 

 
Residential and commercial buildings consume more than 

the 30% of the total energy delivered and this energy is 

primarily used for heating, ventilation and air-conditioning 

(HVAC) [1]. The high levels of comfort and indoor air 

quality combined with the increasing complexity of 

building services and the legal requirements regarding 

energy efficiency (e.g. the Energy Performance of 

Buildings Directive [2]) are increasing the efforts to 

improve the latter. Among the different techniques 

explored, fault detection and diagnosis (FDD) systems are 

demonstrated to be one of the most effective tools to 

increase building energy efficiency due to the fact that a 

significant portion of the energy used by HVAC equipment 

is due to inefficiencies. 

 

Developing an effective FDD method can reduce energy 

consumption by 15-30% [3]. Common HVAC faults may 

remain undetected if they do not have an effect on the room 

temperature or occupants’ comfort. These faults are only 

noticed when the regular maintenance operations are carried 

out and by the time the maintenance occurs, HVAC 

equipment has been constantly deteriorating. 

Over the last few years, building energy management 

systems (BEMS) are being widely implemented as a way 

of modernizing older buildings. These IT-based solutions 

monitor building appliances in real-time, streaming high 

volumes of data which can support the energy 

performance diagnosis. In general, BEMS can store up to 

millions of data points but in practice, only a small portion 

of them are used. Typical energy performance diagnosis is 

based on supplying graphics such as the energy usage or 

the room temperature, that can be useful to detect some 

anomalous behaviours but require an expert to interpret the 

graphics. Despite the potential of automated FDD systems, 

they are not being widely used because they are complex 

and time-consuming as they have to be customized to each 

building they are applied. In addition, they usually need 

large amounts of faulty data to properly characterize the 

system behaviour, which is not the usual situation in real-

world scenarios. 

 

A. Related works 

 

Fault detection methodologies in building HVAC systems 

can be classified into two subcategories: knowledge-

driven and data-driven, also called quantitative or white-

box models and qualitative or black-box models 

respectively. Knowledge-driven models apply 

mathematical and physical models whether data-driven 

models are based on analysing the prior information to 

extract patterns in the measurements of selected variables 

without having any physical meaning. Data-driven 

methods usually require high amounts of historical 

information and here is where the high volume of data 

obtained by BEMS become important. 

 

Zhao et al. [4] classify the data-driven FDD methods in 

classification-based, unsupervised learning-based and 

regression-based. The first group is based on identifying 

whether the monitoring data belongs to the normal class or 

not, being also able to classify the faulty data in several 

fault classes. This kind of work was carried by Yan et al 

[5], combining an SVM-based chiller FDD model with a 

prior feature selection algorithm. Unsupervised learning-

based methods have the principal component analysis 

(PCA) as the most popular algorithm for building energy 

FDD [6], [7]. It transforms the set of correlated variables 
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into a new group of variables which are uncorrelated to each 

other. It classifies the monitored space into two orthogonal 

subspaces, which represent normal condition and faulty 

condition respectively. Finally, regression-based models 

have as their output a continuous variable, such as the 

energy consumption or temperature, which is compared 

with the measured one to identify when the latter is out of 

the normal range. This kind of models is gaining popularity 

due to the fact that they can characterize the system only by 

using normal behaviour data. However, they need a huge 

amount of data to properly tune their parameters. As stated 

in the review conducted by Zhao et al. [4] with several 

examples, the typical approaches in the regression-based 

models are artificial neural networks (ANN) and support 

vector regressions (SVR). 

 

In this study, an FDD method is proposed with the objective 

of using the minimum quantity of faulty data to detect the 

faults as early as possible in the HVAC equipment. A 

regression-based model has been developed using an 

adaptative neuro-fuzzy inference system (ANFIS) to obtain 

a benchmarking chiller model. ANFIS was first 

implemented by Jang in 1993 [8] from the combination of a 

fuzzy logic system, which needs an expert to define the 

membership functions and the rules of the system, with a 

neural network used as a learning technique to minimize the 

membership functions output errors. ANFIS can perform a 

linear mapping between a set of inputs or features and the 

desired output with high accuracy like ANNs and, in 

addition, it has high flexibility on adapting to irregular 

patterns like the ones present in the equipment energy 

consumption. 

 

The rest of the article is structured as follows: Section 2 

presents an overview of the main steps on the development 

of the ANFIS model and the FDD scheme, as well as a 

description of the data used for the study. Section 3 

describes the results obtained from applying it to a case 

study. Finally, in Section 4, the contributions obtained from 

this paper are highlighted and the concluding remarks are 

summarized. 

 

2. Methodology 

 

The framework proposed aims to detect and diagnose 

HVAC faults feeding as less as possible faulty samples to 

the model during its training stage. The flowchart for the 

proposed algorithm is shown in Fig. 1. First, the raw 

historical data collected from the plant is pre-processed, 

including its normalization and a feature selection stage 

based on genetic algorithms (GA). By performing the latter, 

the original dataset is reduced to a subset containing fewer 

variables in order to increase the training efficiency and 

model accuracy. The data is then divided into training and 

testing datasets and after that, the ANFIS model is trained. 

Once the training has finished, the model performance is 

evaluated using the testing dataset. When performing the 

online FDD, the raw data coming from the monitoring 

sensors is pre-processed and fed to the model to then 

compare its output with the monitored data. 

 

 

 
Fig. 1. Flowchart for the proposed data-driven algorithm. 

A. Data description 

 

The model is trained and validated using data collected 

from the BEMS of a real 3-floor university campus 

building located in Terrassa (Spain) with a surface of 

around 2400m2. The building is a research ecosystem of 

the Universitat Politècnica de Catalunya which consists of 

offices and laboratories intended to accommodate several 

research groups. The installation consists of two electric 

chillers, two electric heat pumps, one gas boiler and two 

air handling units (AHU), which manage the energy 

production, energy distribution, pre-conditioning and air-

renewal for the building’s spaces. Fig. 2 depicts a diagram 

of the equipment, which is located on the upper part of the 

building, on its deck. Both cooling and heating devices 

have individual electric power meters to measure their 

electrical consumption, thermal power meters to measure 

the produced thermal energy. 

 

 
Fig. 2. HVAC plant installed on the case-study building. 

Since the chiller is the primary energy consuming source 

of an HVAC installation, the framework developed has 

been evaluated on the electrical chillers of the installation. 

The available data from their operation comprises the 

periods of spring and summer for the years 2017 to 2018, 

with a sampling rate of 15 min. The variables used for the 

model are listed in Table I. 
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Table I. - Variables used to construct the ANFIS FDD model. 

VARIABLE DESCRIPTION 

𝑻𝒆𝒙𝒕 Outdoor temperature. 

𝑻𝒊𝒎𝒑 Chiller impulsion temperature. 

𝑻𝒓𝒆𝒕 Chiller return temperature. 

𝑸 Chiller flow. 

𝑷𝒊𝒏 Chiller electrical power consumption. 

𝑷𝒐𝒖𝒕 Chiller thermal power. 

𝑪𝒊 Compressor control variable (𝒊 = 𝟏, 𝟐) 

𝒕𝒘 Day of the week. 

𝒕𝒎𝒊𝒏 Minute of the day. 

 

The chillers in the building have two compressors, therefore 

if the cooling demand is not too high, only one of the 

compressors is turned on. This behaviour is shown in Fig. 

3. The change is so abrupt that it cannot be modelled 

properly without the compressor control signals, which are 

booleans that take 1 as their value when the compressor is 

enabled. 

 

In order to acquire a dataset including all the required 

signals from the building, a desktop application was 

implemented to periodically scan an OPC server linked to 

the building SCADA system and store the signals in a 

dedicated time-series database. 

 

 
Fig. 3. Chiller consumption abrupt peaks and compressor control 

signals. 

B. Data Normalization 

 

Given the fact that the magnitude of the variables used is 

different (e.g. 0 to 3124 m3/h for the chiller flow and 10.8 

to 35.6 ºC for the external temperature), the accuracy of the 

prediction will be affected if a normalization step is not 

applied. According to the past research in the field of energy 

consumption prognosis, the most common approaches are 

to express the variables within the range of [0, 1][9] or to 

make the variables have zero mean and unit variance while 

retaining the shape properties of the original data set [10], 

[11]. The latter is called z-score normalization and it was 

the preferred in this study. The function used to apply the 

normalization can be expressed as: 

 𝜙′ =
𝜙 − 𝜇𝜙

𝜎𝜙
 (1) 

Where 𝜙 and 𝜙′ are the value of the variable prior and after 

the normalization, 𝜇𝜙 is the mean value of the variable and 

𝜎𝜙 is its standard deviation. After the prediction has been 

completed, the original value must be restored by 

multiplying the standardized value by the standard 

deviation and adding the mean value. 

 

C. Input Selection using Genetic Algorithm 

 

From a modelling perspective, using only the most 

important variables provides a simpler and more reliable 

model. Even when using a good criterion for variable 

selection, there is no guarantee that a model created using 

a set of variables is optimal without testing all the possible 

combinations. Therefore, the input selection process must 

rely on heuristic criteria that can be computationally 

prohibitive since it involves building a model for each 

possible variable combination. Due to this, all the methods 

used in input selection for fuzzy models are suboptimal 

methods meaning that they cannot guarantee the 

optimality of the solution as they do not perform an 

exhaustive search. The most common methods used for 

input selection in ANFIS related applications are forward 

selection and backward selection [12], [13]. However, 

some studies make use of GA to find a suboptimal set of 

variables to build the model [14], [15]. 

  

GA is a methodology for solving optimization problems 

by employing a stochastic search simulating the biological 

evolution based on chromosomes. For the input selection 

problem, the chromosome can be built as a binary string 

that encodes the candidate variables. Equation (1) shows 

the fitness function used for the GA algorithm being 𝑁 the 

number of variables, 𝑒𝑐 and 𝑒𝑡 the testing and training 

errors respectively, 𝛼 an influence coefficient, 𝛽 a penalty 

coefficient and 𝛾 a coefficient used to increase the value 

of the fitness function when the constraints are not 

satisfied.  

 𝑓𝑓𝑖𝑡𝑛𝑒𝑠𝑠 {

𝛾(𝑀𝑎𝑥𝑁 − 𝑁)

𝛾(𝑀𝑖𝑛𝑁 − 𝑁)

𝛼𝑒𝑐 + (1 − 𝛼)𝑒𝑡 + 𝛽𝑁

 
       𝑖𝑓𝑁 > 𝑀𝑎𝑥𝑁

      𝑖𝑓 𝑁 < 𝑀𝑖𝑛𝑁

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

D. FDD approach with ANFIS 

 

An ANFIS model depends on a lot of parameters such as 

the number of membership functions (MF) and their 

shape, the number of rules, etc. The most common way of 

generating a FIS is by using what is called grid 

partitioning, based on dividing each input space using a 

grid to then define a membership function for each of the 

cells generated. Then, one rule is created for each of the 

possible combinations of MF. However, this method 

suffers what is known as curse of dimensionality when the 

number of inputs variables increase (being the upper limit 

around 5 variables). In this study, this problem is solved 

by using Fuzzy C-Means clustering (FCM) to group the 

samples in clusters, then one gaussian MF is created per 

cluster for each input variable and only one rule per cluster 

is defined. 

 

The FDD framework is then tested by inducing some 

artificial faults to the dataset samples. These artificial 

faults are intended to decrease the chiller’s coefficient of 

performance (COP) by increasing the energy consumed to 

achieve the same impulsion temperature or a decrease of 

this impulsion temperature without a decrease in the 
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chiller’s electrical consumption. In order to detect the faults, 

the samples are compared with those forecasted by the 

model. This comparison is carried out by establishing a 

moving window to detect samples that are 2.5 standards 

deviations away from the mean value predicted. These 

points are marked as faulty and processed following the 

subsequent rules: 

 

1. Isolated faulty points are rejected considering them 

as false alarms. 

2. Faulty samples are grouped to avoid considering 

them as more than one fault. 

3. The fault groups are classified according to their 

difference with the predicted signal. 

 

By applying this methodology, the number of false alarms 

is reduced drastically without sacrificing the accuracy of the 

model. 

 

3. Results and discussions 

 

This section demonstrates the performance of the chiller’s 

load forecasting and the detection of faulty regions in its 

operation. Following the methodology described in the last 

section, the modelling and prediction results are first 

reviewed and then the fault detection is detailed in the next 

subsection. 

 

C. Energy Consumption Model 

 

As aforementioned, the dataset is comprised by the chiller 

operation related variables from the years 2017 to 2018. 

Chillers are machines that are only turned on during the 

cooling season which covers from late May to late October. 

Hence, in practice, the data is reduced to more or less 12 

months, Fig. 5 shows the load profile during 2017 where 

each peak cluster represents a week. Two different kinds of 

profiles can be observed: (1) Low consumption zones in the 

first four peaks and the last five and (2) High consumption 

zones where peaks can even double the consumption seen 

in the other category. The training dataset for the ANFIS 

model should contain samples corresponding to both profile 

types in order to accurately predict the power consumption. 

For this reason, the full 2017 cooling season (8648 samples) 

has been used to train the model assuming that the majority 

of the samples correspond to normal operation. 

This training dataset has been split into two subsets: one 

for training and one for validating the model. The 

generated model shows a CV-RMSE of 3.56% when 

predicting the power consumption in the validation 

dataset. Other performance metrics, such as the MAE and 

MAPE, show values of 0.58 kW and 7.61% respectively. 

Fig. 4 shows two different days of the validation dataset 

used for evaluating the model performance. In general, the 

prediction obtained is able to resemble quite well the 

power consumption signal. However, there are some slight 

consumption changes that are not correctly modelled. This 

variations between the prediction and the real 

consumption are due to the fastest dynamics of the chiller 

operation. These dynamics are not included in any of the 

variables used as inputs thus making impossible their 

prediction by the ANFIS model. 

 

 
Fig. 4. Comparison between the chiller power demand signal 

and its prediction. 

B. Fault Detection Results 

 

In this study, the faults are introduced artificially into the 

power consumption profile. Several types of faults in 

chillers end up increasing the energy required to achieve 

the impulsion temperature which is able to fulfil the spaces 

setpoints. That is, a reduction of the COP of the chiller. 

 

 
Fig. 5. 2017 chiller’s power consumption profile. 
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Here, two different types of faults have been studied, one 

that produces an abrupt change on the power consumption 

and another that increases it in a slow manner, simulating a 

soft fault on one of the chiller’s components. The former is 

relatively easy to notice using a regression-based fault 

detection system, so here the focus will be on detecting the 

second type of faults. These faults were introduced in the 

2018 dataset and then the fault detection methodology 

proposed has been applied. 

 

A two-day prediction where an abrupt increase of power 

consumption has been introduced in the first day is depicted 

in Fig. 6. The comparison between the predicted 

consumption and the faulty profile is done by calculating 

the difference between the real signal and the mean of the 

prediction using a moving window of 10 samples. The 

differences greater than 2.5 standard deviations are marked 

as fault candidate points. 

 

 
Fig. 6. Abrupt change in power consumption. 

This methodology would detect the transient consumption 

peaks produced when the chiller is turned on as fault points. 

In order to avoid those false alarms, the methodology 

proposed include several filters that have to be bypassed by 

the fault candidate points. The first filter consists of 

neglecting isolated points. In this study, if a point is not 

surrounded by another faulty sample in a time span of 30 

minutes it is considered to be a false alarm. After that, the 

faults originated by a possible error in the prediction or 

sensor faults are also filtered. To do so, only those fault 

points sets that have a time span of at least 3 hours are 

considered as faults. As observed in Fig. 6, this strategy is 

able to detect accurately abrupt increases of power 

consumption. However, it is also clear that this 

methodology also misses the opportunity to detect 

deviations that last less than 3 hours. 

 

Next, the same strategy is applied to the detection of soft 

faults. Fig. 7 shows the result of gradually increasing 

power consumption for three weeks to a total increase of 

15%. The schema shows a fast response, as the fault is 

detected only one day after its introduction when the 

energy increment is less than 10%. After its detection, 

continuous alarms will be raised to the maintenance 

personnel until the fault is corrected. It is worth 

mentioning that in this case, the peaks corresponding to 

the transient regime are also detected as faults as they are 

surrounded by true faulty samples. 

 

4. Conclusions 

 

This work presents a fault detection framework based on 

the generation of a regression model trained using a low 

number of faulty data samples using the ANFIS 

methodology. 

 

The model is used to predict the energy consumption of 

the chiller under a set of circumstances to then compare 

the result with the one measured directly from the 

equipment. The prediction error is assumed to be low 

when the chiller operates at normal conditions, this is 

when there are no faults. When a fault occurs, the 

behaviour of the real signal deviates from the prediction. 

A dynamic threshold is applied to compare the difference 

between the measurements and the predictions. The results 

of the fault detection scheme are promising as they have a 

low rate of false alarms, high accuracy given the low error 

obtained in the model training and a low time delay 

between the error appearance and its detection.  

 

 

 
Fig. 7. Slow decrease of the chiller COP. 

Fault 

introduction 

Fault detected, 

1st warning 

https://doi.org/10.24084/repqj18.270 200 RE&PQJ, Volume No.18, June 2020



The methodology proposed has two parameters that control 

the number of false alarms raised and the opportunities 

missed: Studying ways of dynamically setting these 

parameters can be an interesting topic of future research. 

The proposed fault detection is expected to reduce 

equipment downtime caused by major maintenance and 

prolong the equipment life by locating the faults in early 

stages before they can cause any major damage to the 

system. In addition, this scheme can be further combined 

with a classification method which, using only the data 

marked as a fault, could determine the type of the fault.  
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