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Abstract 
Photovoltaic (PV) solar energy has become a reference in 
electrical generation. The plants currently installed, and those 
planned have a huge capacity and occupy large areas. 

The increase in size of the plants presents new challenges in 
operation and maintenance areas, such as the optimization of 
the number of sensors installed, large data management and the 
reduction of the timework in maintenance. 

The aim of this paper is to show a methodology, to diagnose 
failures, based on the measured data in the plant. The 
methodology used is supervised regression machine learning 
and comparison algorithms. This methodology allows the study 
of the sensors, the inverters, the joint boxes and the power 
reduction caused by soiling. The result would allow the 
detection of around 1-5% of production loss in the plant. The 
algorithms have been tested with real data of PV plants, and 
have detected common failures such as production drops in 
strings and losses due to soiling. 

Keywords: PV Solar plants, Efficiency, failures and 
Diagnosis 

Introduction 

Photovoltaic solar energy is growing by over 20% 
worldwide yearly [1]. The decrease in the price of the 
modules and the improvements in the technology, 
increasing the performance by up to 85% on average, 
make it competitive in the electricity generation sector 
[2]. These facts together with the policy incentives, at 
European [3] and national [4] levels, pushed the 
installation of new plants. 

These new plants exceed the average power of the 
existing ones by 10 times, generating hundreds of 
megawatts and occupying thousands of hectares of 
extension. There is no previous experience, nor studies in 
these huge photovoltaic (PV) plants, where millions of 
modules are laid and connected in thousands of joint 
boxes that end up in power stations with inverters greater 
than a megawatt.  

The monitoring of all modules and equipment of the 
plant is very costly as a consequence of the number of 
sensors needed and the cost of processing such an 
amount of information. So, one challenge in this kind of 
plants is finding the minimum number of sensors to 
control the plant and the most efficient way of working 
with millions of daily generated data. 

The increase in the size of the plants requires the 
optimization of the operation and maintenance, which 
implies new challenges and trends for this task [2], such 
as minimising the timework in the maintenance tasks. It 
is mandatory to quickly identify the location of the faults 
in the plant in order to optimise the reparation time and 
its impact on production. 

Machine Learning techniques (ML) combined with Big-
Data methodologies are suitable to work with large time 
series of data streamed by reasonable number of sensors 
to model the plant.  They can be used to solve the 
problem of the high number of sensors and to process the 
generated data. 

Diagnosis is the way of determining the status and 
performance of the PV plant aiming at detecting failures 
in the plant components. Besides, it is not only useful in 
the maintenance tasks and to enhance efficiency, but also 
to avoid financial risks [5], and to decrease Operational 
Expenditures (OPEX) [6] and the Levelized Cost of 
Energy (LCOE) of the PV plant [7]. 

The diagnosis models using ML allow the location of the 
faults, and the control of the efficiency of the 
components. This helps to find the most appropriate way 
to address the failures, minimizing the number of man 
hours in maintenance, increasing availability of the plant 
and, therefore, the production.  

In this study, a working methodology based on ML 
techniques, is presented. PV plants are modelled using 
several algorithms. This allows a quick identification of 
the main failures, such as sensor errors, string and 
inverter faults and performance drops. 

In the following sections, a review of the faults appearing 
in the PV plants is carried out in order to assess those 
which are more convenient to work on, and to identify 
diagnostic models, adapted to these large plants. Finally, 
the diagnosis methodology is described, and two 
successful cases are presented. 

Background 

Scientific literature shows a large number of papers 
describing and analysing failures in the existing PV 
plants. Most of the studies are focused on the direct 
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current side of the plant [8,9], specifically in the PV 
modules.  

The study of the failures found along the life of the plant 
[10,11] reveal that different failures can be found 
depending on the operation time of the plant, start-up, 
mid-life or close to the final stages of the life of the plant. 

During the first years of a plant, the failures are derived 
from manufacturing errors of the chosen material which 
determines its premature deterioration [5], or even from 
the production process failures.  

In the midlife of the plant, the weather can affect the 
welds by thermomechanical fatigue [12], by oxidation, or 
by the appearance of "snailtrails" [13]. Other problems 
found are delamination, discoloration [9] and bubble 
formation [5]. 

As the plant ages, the most common problem studied is 
degradation. The studies related to the degradation 
analyse are based on the effect of the humidity, 
ultraviolet rays or temperature [5,9,14]. Other studies 
analyse the influence of the material used in the module 
regarding degradation  [15]. 

One of the problems found throughout the whole life of 
the plant is the soiling in the PV modules. This 
phenomenon is mainly produced by the accumulation of 
dust [10,16] on the surface of the modules. Other 
biological remains as bird droppings, leaves, tree resin, 
adhered mosses, etc., also have an impact [5]. The effect 
of soiling decreases production and can also cause 
oxidation and a reduction of the lifetime in the modules.  

Regarding the alternating current side of the plant, 
inverters are the most studied components, although they 
have a lower failure rate than the PV modules. Their 
errors are mainly related to high temperatures, lightning 
strikes and filter breakage [5]. The lifetime of the 
inverters is  of around 10 years [10,17] which compared 
to the 30 years that the PV modules last, means that they 
reach the end of their useful life more than once during 
the operation of the plant. 

The sensors used to control the performance of the 
plants, specially the pyranometers, also present failures. 
These failures must be detected because their 
measurements are very important for the proper 
operation of the plant [18,19]. 

The conclusions of the failure analysis are that the two 
more critical elements in PV plants are the PV modules 
and the inverters. Then, monitoring of the performance 
of those critical elements, control of the state of the 
sensors and continuous evaluation of the degradation and 
soiling are key for maintaining the plant in a good health 
state. 

There are many approaches for the diagnostic and fault 
detection models that can be applied to PV plants [20]. 
Between them, those using SCADA data and plant 
performance to detect deviations from well-established 
thresholds are very interesting as they only use the Plant 
available information. 

The diagnostic models, based on performance or 
efficiency, estimate the energy production and losses of 
the plant using machine learning algorithms [21,22]. 
These estimated values are then compared with measured 
values [23,24] and the deviations associated to faults in 
the plant. 

The diagnostic models based on performance used to 
work with the modules control their efficiency. The 
efficiency is related to its influencing factors like 
shadows, soiling, temperature, degradation, faults, 
tracking system... [25,26]. 

Finally, the models focused on the inverters, relate the 
measurements, mainly power and currents, in the direct 
current side with those measured in alternating current 
side [27,28]. 

Working only with the data from the large inverter is not 
enough to locate failures in modules. In order to not 
deploy a large number of sensors, the solution would be 
working at string level.  For this, it is necessary to obtain 
measurements in the junction box and then develop a 
methodology to work with all this information. 

In this paper, simple framework with four objectives is 
proposed: identifying areas with possible failures in the 
modules, detect inverters whose operation is not 
adequate, discover sensor failures and reveal production 
drops. The result of the algorithms will allow an efficient 
planning in maintenance tasks. 

Methodology 

The developed framework works with the data registered 
in the SCADA of the plant, such as the climatologic 
variables and electrical measurements. The available 
measurements in the reference plant, used for developing 
the models, are in Table 1. These meteorological 
variables have been measured in a met mast equipped 
with anemometer, wind vane, pyranometer, barometer, 
thermometer and humidity sensor, and situated in the 
middle of the plant. The temperature of the modules has 
been measured in the closest module to the met station, 
considered as reference module, and the electrical signals 
have been measured in the joint boxes and the inverters. 
A training period of one year of has been stablished for 
the determination of the parameters of the algorithms.  

Table1. List of variables 

Variable 
• Wind speed • Input join box current 
• Wind direction  • Output join box current 
• Radiation • Inverter current DC 
• Pressure • Inverter voltage DC  
• Temperature • Inverter current AC 
• Humidity • Inverter voltageAC 
• Module Temperature • Inverter Temperature 
• DC Power • AC Power 
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The methodology has been developed in the “R” 
programming language [29] and is organised in groups of 
algorithms according to its functionality, as can be seen 
in Figure 1. All algorithms developed can be run on a 
standard computer, as for example, in the same computer 
where the SCADA system has been installed. 

 

 

 

 

 

 

 

 

Figure 1.Framework description 

The framework is divided in two main groups of 
algorithms. The first one, named as Data cleaning 
algorithm, is used to clean, organise and adequate the 
input data. The second group, named as detection 
algorithms, work with the input data in order to find 
malfunctions in the system and anomalies in the data. 
These algorithms will be explained later. 

The results of these algorithms are binary variables 
indicating the anomalies. The combination, frequency 
and duration of these variables generate warnings that 
will be used to detect failures in the plant. 

In addition to the input data, three more variables are 
calculated with a specific group of algorithms: 
"theoretical radiation" (Gth), "operation" (OPE) 
indicating if the plant is capable to operate, and 
"shadows" (SBR) that indicates the presence of shadows. 

The theoretical radiation (Gth) is calculated following the 
clear sky model, used in the European Solar Radiation 
Atlas (ESRA) [30,31], corrected for inclined surfaces 
[32] and improved with the Linke Turbidity Factor, that 
accounts for the presence of aerosols and water vapour in 
the atmosphere [33]. This variable is used to verify the 
radiation measurement in the first group of algorithms 
and also to estimate the production of each inverter in the 
detection algorithm. 

The binary variable OPE relates the radiation, the power, 
the module temperature and the ambient temperature 
taking the value 1 when it is in operation state. Finally, 
the SBR variable is determined from the hour and month 
with shadows and takes the value 1 when there is no 
shadow. These two variables are used to discriminate 
anomalies in the detection algorithm. 

The Data cleaning Algorithms guarantee the quality of 
the information and detect anomalies in the measured 
input data. These algorithms work with key performance 
indicators (KPI), which determine the operating range of 
all the variables considered (see Table 1), allowing the 
detection and filtering of outliers in the measured data by 
means of  Equation 1. 

Persistence and variability of data are evaluated with 
Equation 2 which allows detecting when there are 
significant changes. 

Finally, comparison of two variables representing the 
same physical magnitude, as is the case of measured and 
theoretical values of radiation, is performed using 
Equation 3, which allows comparing both values. 

Kjvar_i=
Varji

U𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗
 Equation1 

Kjvar_i=��
Varji − Varji-t

Varji
�

𝑁𝑁

𝑡𝑡=1

 

 

Equation2 

Kjvar_i=
Varji�
Varji

=
∑ ak · Varki
n
k=1 + b

Varji
 Equation3 

 
Kjvar_i: KPI of variable (j) in instant (i) 
Var: measured variable (j)in instant (i) 
Uvarj: reference limit of variable (j). Pre-defined value 
by technical limitation  
N: instant of time 
ak y b: coefficients 
n: number of variables representing the same magnitude 
 
The obtained KPIs for the input data are then compared 
with known thresholds, defined by the manufacturer of 
the components, by experience, or using the mean 
behaviour of the signals. 

The result of the cleaning data algorithms is a set of 
binary flag variables Fi, linked to each KPI and 
indicating if the parameter is below the threshold (value 
“one”) or not (value “zero”).Whenever the threshold is 
surpassed, an anomaly in the corresponding measurement 
can be present. These anomalies in the measurements are 
not used in the next group of algorithms as they can stand 
for failures in sensors. 

The second main group of algorithms detect anomalies in 
the operation of the plant. As mentioned in the 
background section, the main losses of production are 
related with failures in big components, PV modules and 
inverters, and with production drops. Then, these 
algorithms are focused on the detection of these events. 

The algorithms to verify the inverters are based on 
Multivariable Linear Regression and use the measured 
and the calculated variables. The energy at the output of 
the inverter is estimated with several models based on 
weather and electrical variables together with other 
inverter data. Having different estimated results from 
different sources strengthens the model. The ratios 
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between the estimated and measured energy are 
indicators that can be used to compare with a threshold. 

In this case the threshold means unknown energy loss, 
and from a technical point of view, it is recommended to 
work with values equivalent to 3%-5% of the energy 
loss. Equation 4. 

KE_i =
Eı�
Ei

 

E�i=a·Gi+b·Gth+c·Tamb+d·Tmod,  

E�i=� ek·Ek

n

k=1

 

Ei�=∑ f∙Ii+g∙Viwith OPE, SBR, Fi = 1 

Equation 4 
 

 
E�i y Ei estimated and measured energy  
Gi measured radiation 
Gth theoretical radiation 
OPE, SBR, y Fi binary variables  
Tamb ambient temperature and Tmod temperature of module  
Ii current DC & AC and Vi voltage DC & AC 

An easy and efficient methodology to verify the PV 
modules is the comparison of the input current 
measurement of the string junction boxes. These 
comparisons generate a correlation matrix between all 
the junction boxes inputs. 

The Pearson correlation factor [34], obtained for the 
currents in the junction boxes, is the indicator used to 
determinate anomalies or faults in the PV modules, 
Equation 5.  

Pi,j =
cov(Ii, Ij)

�var(Ii) ∙ var(Ij)
 Equation 5 

 
Ij junction box current   
Pi,j correlation coefficient 

Working with the whole plant allows the comparison 
between strings, not only with those belonging to the 
same box where the correlation is normally better but 
also with the rest of the plant, in order to prevent failures 
in the detection when there are several strings with 
failure in the same box. 

There are two threshold values to determine the 
anomalies in a string. One is defined as the average of 
the Person correlation coefficients Pi,j, estimated with 
the measurements of the training period for the whole 
plant assumed in good health status. The other threshold 
is obtained from the median of the average values of the 
correlation coefficients, Pi,j, of all the strings in each 
junction box. 

When the indicator of a string measurement is below 
both thresholds, there is an anomaly in the string. If it is 
over them, it is running properly. In other cases, it may 
be necessary to analyse the problem in depth taking the 
result of the inverter algorithms into account.  

The results of the detection failures algorithm in inverters 
and strings are also new Fi binary variables related with 

the indicators, and in this case, they indicate anomalies in 
the behaviour of these components. When the KPIs 
defined do not fulfil the threshold, the value of the binary 
variable associated is “zero”. 

Production drops can be caused by soiling or 
degradation, as mentioned in the introduction section. 
Both decrease the whole plant production continuously 
and, in the case of soiling, a correct management of the 
cleaning process results in the reversion of the process 
and the increasing of the production. 

Production drops are complicated to detect quickly 
enough due to the influence of factors difficult to 
estimate, such as cloudiness. To address this problem, the 
gain of the current in the inverters as a function of the 
radiation has been used.  

This value is then constrained to a known range and 
smoothed, by using the inverse tangent function and 
taking the moving average in a predefined interval 
Equation 6. 

Using this gain provides independence with the 
cloudiness and its transformation through the inverse 
tangent function allows to strength the results reducing 
the spurious values. 

𝐾𝐾𝑑𝑑_𝑖𝑖=
∑ tan−1 �𝐼𝐼𝑖𝑖

𝐺𝐺𝑖𝑖
�𝑛𝑛

1

𝑛𝑛  Equation 6 

Ii the value of the input inverter current 
Gi the value of the radiation 
n: time 

The threshold to determine when an intervention is 
necessary, is defined with a balance between its cost and 
the production loss cost. This is a decision of the 
manager of the plant. A decrease of the indicator in 2-3 
units is equivalent to 4%-5% performance loss. 

The whole set of binary flag variables defined in the data 
cleaning algorithms and in the failure detection 
algorithms, represent anomalies in the measurements or 
in the operational behaviour in the plant and are analysed 
in frequency and duration, to eliminate spurious data. 
The combination of activated flag variables with value 
“zero” determines the warning that indicates the need of 
the revision of a component or a sensor. 

The study, performed component by component, allows 
detecting lack of production of around 5% in one string 
or inverter, which mean less than 1% considering the 
total power of the plant. 

In the next section, these algorithms have been checked 
in two real common failures. 
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Studied cases 

A significant lack of production in a string and the 
detection of soiling are the cases selected to verify the 
framework. 

Faulty string detection 

The detection of the lack of production in the strings, in 
such large plants is complicated since they can be 
negligible over the whole production of the plant, but 
these small losses can result in important economic 
losses along the lifetime of the plant. These string faults, 
as explained in the methodology section, are detected 
comparing the production of the different strings.  

Figure 2, shows the correlation coefficients between the 
string productions of only 4 joint boxes of the plant, for 
each one is showing only 9 input strings of the box. This 
sample allows it to better detect the lack of production in 
the strings, and how the box is affected. 

Because of the proximity between the strings of the same 
box, they have higher correlation among them than when 
they are compared with those of different boxes. This can 
be identified in Figure 2 by the darker big squares along 
the diagonal.  

It can also be seen how string 4 in box 2 and inverter 1 
present a substantial lack of production, showing a lower 
correlation compared with all the others, and how this 
anomaly in one string also affects its joint box having a 
worse correlation between the rest of the boxes.  

It is worth to note that faults of production in one string 
cause less than 1% of production drop regarding the total 
plant power, which is very difficult to detect without a 
specific study. 

 
Figure 2. Comparative study of string production 

Soiling detection 

The cleaning of the PV modules in big plants is a task 
that involves several days of work. An excess of cleaning 
in such large plants implies unnecessary costs, while a 
scarce cleaning can cause a production loss. The 
identification of the optimum cleaning time, based on the 

measured data, is an important aid to improve the 
maintenance cost-effectiveness. 
 
As has been described in the methodology to identify the 
soiling, a specific KPI is defined. An example in Figure 
3, shows a continuous decrease of the parameter in one 
inverter of a plant with close to 100 MW and 3 years of 
age and how it has recovered after the cleaning. In this 
specific case, the action taken resulted in a decrease of 5 
points (equivalent to 12% performance loss) in the 
inverter study. 

 
Figure 3. Soiling indicator before and after cleaning 

The soiling in this plant is mainly caused by bird 
droppings so not all inverters are equally affected. The 
loss of production in relation to the total power of the 
plant was less than 10% when the cleaning was decided. 
This decision followed an economical criterion. 
Nevertheless, the detection of the loss was done when the 
production had dropped by 5% in the worse inverter and 
the affection in the plant was less than 3%. 

Conclusions 

The increase in the PV plants size makes it necessary to 
diagnose and locate the faults which influence the 
availability and efficiency, such as errors in the sensors, 
production drops, or soiling. 
 
This paper has presented a framework which combines 
different algorithms based on comparisons and ML 
techniques working with measurements available in the 
plant, without the need to install additional 
instrumentation or use external information. This way the 
CAPEX of the project does not need to be increased. 

The two application cases which have been presented are 
the detection of a fault in a string and the identification of 
soiling, showing how the framework, and the proposed 
algorithms, allow the identification of common failures, 
impossible to identify optimally using previous know 
how. 

This improves of the profit, and the reduction of the 
losses caused by the failures being able to detect lacks in 
production of around 1-5%. 
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