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Abstract. While large wind farms are well monitored, with a 
wealth of data provided through a SCADA system, the only 
information about the behaviour of small wind turbines is often 
only through the metered electricity production.  Given the 
variable electricity output, it is difficult to ascertain whether a 
particular electricity production in a metering period is the result 
of the turbine operating normally, or if a fault is resulting in a 
production less than possible.  This paper presents a method to 
correlate metered electricity output from a set of 5 kW wind 
turbines with weather information from a weather station some 
distance from the turbine.  That correlation will then be classified 
into ‘expected’ and ‘unusual’ performance using Principal 
Component Analysis.   
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1. Introduction 

While industrial-scale wind energy projects using MW-
scale turbines have grown rapidly over the last two 
decades, smaller wind turbines have grown at a much 
slower rate and somewhat stood in the shadow of the large 
wind project.  However, they play an important role in 
supplying energy to smaller and rural communities, as 
well as for embedded generation in sub-urban and even 
urban environments [1], [2].   In terms of their cost-
effectiveness, small wind turbines are at an inherent 
disadvantage over the large wind energy market, since 
they cannot exploit economies of scale while also 
operating closer to the ground where the wind is always 
lower than higher in the atmosphere.  Therefore, it is even 
more important to design or select the most suitable 
turbines, the best location for them, and to ensure that they 
operate as well as they can. 

This translates into three major specific challenges for 
small-scale wind:  the first is related to the turbine design 
as the smaller wind turbines need to be designed for more 
turbulent and volatile wind conditions than larger turbines 
whose rotors are placed much higher in the atmosphere. 
While design of large turbines has largely converged to an 
industry standard of a pitch-controlled, variable-speed 3-
bladed horizontal-axis wind turbine, the design of small 
wind turbines is still much more diverse [3] 

The second challenge is the optimum micro-siting of 
turbines, as the local wind conditions vary significantly 
across a small area.  For example, the performance of a 
roof-top mounted turbine varies substantially for different 
points on the roof [4]–[6].   

The third challenge is in the monitoring and maintenance 
of smaller wind turbines.   While large turbines are fitted 
with a large number of sensors to monitor environmental 
and turbine conditions [7], smaller turbines are often not 
monitored except through the electricity meter monitoring 
the electricity production accumulated over an accounting 
period, typically at half-hourly intervals or even less 
frequently. 

The aim of this paper is to present a method on evaluating 
the performance of a set of small turbines using only the 
metered electricity production and wind speed and 
direction data from a ‘near-by’ weather station, where 
nearby could be several 10s of kilometres from the 
turbines.  The method will be illustrated for an installation 
in Scotland. 

2. Analysis methodology 

The data available are metered half-hourly electricity 
production from an installation complemented by hourly 
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wind speed and direction data for the same time period 
from a nearby anemometer on a 10 m tall met. mast 
operated by the UK’s meteorological office. 

As there is no ‘training’ period available to judge good 
performance against below-expected performance, the 
method is here developed in two separate steps.  In the first 
stage, an empirical performance curve of the wind turbine 
installation will be constructed through extracting 
performance distributions of the turbines in pre-defined 
wind speed bins of the corresponding wind speed data.   

In the second step, Principal Component Analysis (PCA) 
will be applied to the data without any other explicit 
fitting.  In this PCA analysis, a set of singular basis vectors 
is constructed through a PCA analysis of the subset of data 
which were identified as ‘good turbine performance’ 
according to the empirical performance curve.   The entire 
set of data is then projected onto that singular basis vector 
space.   

The argument here is that other ‘good’ behaviour will be 
mapped onto the same locations in that PCA space as the 
training data while data associated with unusual behaviour 
will be projected to other parts of that space.  This means 
that the space spanned by the singular basis vectors can be 
sub-divided into regions with different levels of 
performance quality.   The quality score of the region in 
which a particular measurement is mapped on to, therefore 
results in a quality measure of that particular turbine 
productivity information. 

3. Sample Data 

The wind energy data used to develop and illustrate the 
method were provided by the owner of an installation on 
an island in the north of the UK, while the wind resource 
information was provided from the nearest UK 
Met. Office weather station through the MIDAS 
dataset [8].   This data set provides hourly average wind 
speed and gusts in a 10-minute measurement period 
leading up to the measurement time stamp, both rounded 
to the nearest knot, and the wind direction rounded to 
± 10° from an anemometer at a nominal height of 10 m 
above ground. 

The installation consists of three 5 kW turbines with a 
nominal rated wind speed of 13 m/s.  They are mounted 
on 15 m tall poles and have upwind horizontal-axis rotors, 
passively yawed through a vane.   The site is located 25 km 
north of the weather station associated with the nearest 
airport. 

Just over two years of data are available, from July 2013 
to July of 2015, with one extended gap of 43 days in 
November and December 2013, and a shorter gap of 6 
days in February 2014.    The wind speeds recorded during 
the gaps do not show any unusual distribution, and 
certainly do not include any extreme events.  As a result, 
the data gaps are inferred to be due to communications 
issues and not linked to the wind resource.  With a data 
availability of 93.5 % and 95 % for the two data sets, it can 
be assumed that the gaps will not introduce a significant 

bias in the analysis, and are simply ignored in the analysis.  
This is possible, since the analysis is purely based on 
temporally independent samples of simultaneous 
measurements 

The available installation performance data were only the 
metered electricity fed into the grid with a half-hour 
resolution.   To align the data structure between the turbine 
performance and the wind resource, the electricity 
production from each half hour before and after a full hour 
were added to provide hourly production centred around 
the wind speed measurements.  This resulted in a total set 
of 17 088 data triples of electricity production, wind speed 
and wind direction. 

4. Empirical performance curve 

Figure 1 shows a simple scatter plot of the electricity 
production against the raw wind speed data from the 
met. mast (in units knot).   Figure 1 shows a clear 
correlation between wind speed and energy production, 
including clear evidence of cases where the output appears 
to be due to only one or two turbines operating instead of 
all three.  In addition, there is substantial scatter around 
that easily understood variation.   

 

Figure 1.  Metered electricity production against wind speed 
from the nearby weather station. 

Given that the given wind speed is rounded to the nearest 
integer, the natural binning for the analysis is by integer 
knots.   First, a box-and-whisker plot for the electricity 
production in each wind speed bin is created and shown in 
Figure 2, with a limit of the upper whisker set so that the 
upper quartile is no larger than half of the third quartile.  
This is to exclude outliers in the lower wind speed range.  
Given the different likelihood of a particular wind speed 
(consistent with a Weibull distribution), the number of 
samples in each wind speed bin varies substantially, from 
a few wind speed bins with single observations at the very 
high wind speeds, up to over 1 000 data points at the most 
likely range between 7 and 10 kn, with over 100 data 
points in each bin in the range between 2 and 29 kn.   

From this, the equivalent of the ‘rated wind speed’ is 
determined as the first bin where the upper whisker 
exceeds 95% of the installed capacity.  This is used to 
determine a scaling between the measured wind and the 
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reference wind speeds from the manufacturer’s 
performance curve, and the identified empirical rated wind 
speed is highlighted by the red dot and lines in Figure 2.  
With three turbines, the threshold for selecting the rated 
wind speed is 14.25 kWh.  The boxplot at 14 kn is the first 
where that hourly electricity production is no longer 
regarded as an outlier.   

 

Figure 2. Box-and-whisker plot of the observed electricity 
production against weather data in wind speed bins of size 1 kn. 

In the absence of confirmed ‘good’ behaviour of the 
installation, the empirical performance curve will be 
defined as the best 3/8th of the data.  The resulting range of 
performance one can expect from the installation is shown 
in Figure 3, as the area shaded in blue denoting the range, 
and the solid line for the mean of the data within that 
range.  Of the total 17 088 measurements, 8 698 are within 
the blue band. Overlaid on this is the manufacturer’s 
performance curve mapped onto the best estimate of the 
wind speed at the site, as the dashed red line.  It is clear 
that the installations appear to perform better at low wind 
speed but that the performance increases much more 
gradually than a single turbine under controlled 
conditions.  Furthermore, even though the turbine 
manufacturer states that the rated power should be 
achievable up to a wind speed of 60 m/s (or 117 kn), the 
installed turbines do show a gradual but clear drop of 
productivity at high wind speeds.  The reason for this 
discrepancy is not clear. 

 

Figure 3. Empirical performance curve for the installation 
against the regional weather data. The dashed red line indicates 

the manufacturer’s performance data for a single turbine. 

This can be further refined into a directional sensitivity by 
plotting the median performance by wind speed and wind 
direction bins, shown as a heat map in Figure 4.  There it 
is clear that a systematic directional sensitivity is most 
clearly observed just below the empirical rated wind 
speed.  For wind directions around 70° to 90° and 220° to 
270°, the installation reaches capacity at low wind speeds 
than for the other wind directions.  Without reference to 
local maps, it is impossible to say whether this is due to 
turbine wakes or topographic effects. 

 

Figure 4.  Heat map of variation of mean performance by wind 
direction.  Red colours indicate enhanced productivity, blue 

colour indicate reduced productivity. 

5. PCA-based performance estimation  

For the development of the PCA-based performance 
estimation, the 8 698 observations within the blue range in 
Figure 3 are then taken to train the PCA estimator.   
Principal Component Analysis is a widely used technique 
for data reduction, e.g. [9], [10], phase space 
reconstruction [11], forecasting [12] and wind resource 
assessment [13].  It is usually recommended to scale the 
input variable so that no variable introduces a bias due to 
a much larger range.   The procedure starts with creating a 
data matrix Y, consisting of column vectors of 
simultaneous data, 𝐘!,#$%,&,' = (𝐸! , 𝑢! , 𝜃!), with the 
electricity production Ei at time point i, the wind speed ui 
and the wind direction qi.  All data were normalised to be 
within the interval of 0 to 1.  This means that full 
electricity production of 15 kWh is rescaled to 1, wind 
speeds are divided by the highest observed wind speed of 
58 kn, and wind direction is now from 0 northerly winds 
through 0.25 for easterly winds to 1 for 350°.   

The PCA itself is based on the Singular Value 
Decomposition (SVD) of that matrix Y, such that  

𝐘 = 𝐏	𝚲	𝚺 

(1) 

with 

- P the matrix with column vectors of ‘principal 
components’, which give the location in the PCA 
space.  The matrix is orthonormal: each column 
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vector has unit variance and each column vector 
is orthogonal to all other column vectors 

- 𝚲 the diagonal matrix of ‘singular values’ which 
measure how much the variation in the direction 
of that basis vector contributes to the overall 
variance, 

- 𝚺 the matrix with column vectors defining the 
basis vectors, often referred to as ‘singular 
vectors’. This matrix is also orthonormal. (Note 
that some software package implement the SVD 
implemented algorithm to return the transpose, 
i.e. the basis vectors are the rows). 

The new representation of the data in the PCA space 
shows the ‘coordinates’ of a measurement as the Principal 
Component value against the axis of the associated basis 
vector.  The data from the training set in this space are 
illustrated at a projection of the points onto the plane 
spanned by the first two basis vectors, i.e., PC1 versus 
PC2, in Figure 5a while Figure 5b shows the data in the 
plane spanned by the second and third direction, i.e., PC3 
vs PC2.  Variation in PC1 is largely due to the nominal 
performance characteristics while PC2 and PC3 capture 
the variability around that.  Therefore, the plane PC2-PC3 
is that to judge performance against. 

 

Figure 5.  Scatter plots of a) the first Principal Component 
values against the second, and b) the third against the second 

for the training data. 

The scatter plot in Figure 5b is then used to create a density 
map for individual area elements in that space.  Elements 
without any data points are assigned a density of zero, the 
element with the maximum number of points a density of 
1, and all other areas are assigned the ratio of the local 
number of points by the maximum.  This results in the heat 
map shown in Figure 6.   Assuming (for the purpose of this 
demonstration) that the most reliable data are the most 
frequent, this density map can now be used as a quality 
index to estimate the quality of new measurements against 
these reference data. 

Mapping all (or any future measurements) onto this 
reference quality map follows the same principle as 
equation (1) but instead of finding P, 𝚲, and 𝚺, now the 
task is to calculate new P values with the singular values 
and vectors from the training set and the new data, 𝐘′: 

𝐏( = 𝐘(𝚺)𝚲*% 

(2) 

 

Figure 6.  Density map of the installation’s ‘good’ behaviour in 
Principal Component space.  

where the inversion of the singular vectors is given by the 
transpose of the matrix (since it is orthonormal), and the 
inversion of the singular value matrix is the inverse of each 
diagonal element (since it is diagonal).   Applying this 
mapping to the full data set results in Figure 7 where the 
colour of the points is based on the local quality index, 
with light blue having an index of 1, and red has an index 
of 0. 

 

Figure 7.  Mapping of all data on to the Principal Component 
space, with colour coding by quality score, r. 

Converting the colour-coded principal components back 
into the more familiar electricity-wind speed graph in 
Figure 8 confirms that the method has successfully 
identified the main branch of the empirical performance 
curve, and scored the points lower, the further away they 
are from the reference curve.   
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Figure 8. Installation performance, with performance colour-
coded by quality score, r.  

 

6. Discussion 

Figure 8 demonstrates that the performance monitoring 
method is clearly able to map new data onto the reference 
information created as a benchmark of ‘good 
performance’.  Furthermore, the computational demands 
are very small: on a 1.6 GHz Dual-Core Intel i5 laptop, the 
creation of the empirical performance curve, shown in 
section 4, was completed within 5 seconds including 
reading in the data files using just under 1 second of CPU 
time.  The PCA of the reference data was completed in 
2.7 s using 1.7 s of CPU, and the mapping of the entire 
data set onto the reference singular vectors took 1.4 s and 
0.6 s of CPU time.     As such, it shows clear potential to 
be an easily implemented tool to provide monitoring of 
small wind turbines. 

However, Figure 8 also shows that many of the intuitively 
accepted points at higher wind speeds and near the 
installed power have a lower quality index than the bulk 
of the data at lower wind speeds.  This can be traced back 
to the original approach of creating the reference PCA 
using the actual filtered observations.  Since the most 
common wind speeds are in the range of 3 to 20 kn, the 
density map in Figure 6 will necessarily have the highest 
value, therefore introducing a bias towards most common 
data as opposed to data trusted by performance.  While this 
does not invalidate the PCA approach in itself, it points to 
a source of bias in the construction and selection of the 
reference data to train the PCA with.    

One suggestion to explore in future work is to create 
surrogate reference performance data based on the 
reference curve constructed in Figure 3 but, instead of 
using the available data within the acceptable range 
delineated by the shaded area, the surrogate reference data 
would take the observed distribution within each wind 
speed bin but then populate that bin with randomly 
generated performance data which conforms with the 
observed distribution but ensures that each wind speed bin 
has the same number of samples.  This would preserve the 
shape of the reference performance curve but remove the 

bias from the fact that some wind speeds are more 
common than others.  

Irrespective of this current weakness, it is instructive to 
apply the method to judge the performance of the 
installation against expectations.  Figure 9 creates the data 
for this, with the performance shown as the capacity 
factor.  The actual performance is the central red column, 
while the first column on the left is the expected 
performance when using the manufacturer’s performance 
curve (the dashed red line in Figure 3) and the best 
estimate of the local wind speed.  It is clear that the 
manufacturer’s information would lead to a significant 
over-estimation of the yield, followed by a disappointment 
of the client.   Testing how realistic (or not) that 
manufacturer’s estimation is, can be done by using the 
performance curve shown as the solid blue line in 
Figure 3.  Given that it outperforms the manufacturer’s 
curve at the very common lower wind speeds, the potential 
is actually slightly higher even than promised by the 
manufacturer.  This suggests that the actual performance 
falls not only well below expectations but also below its 
potential.   

To estimate how much of that potential is realistically 
recoverable by regular monitoring, the data below 
expectations have been put into two categories.  The first 
category is likely to be related to the grid infrastructure 
and therefore beyond the control of the owner.  Since it is 
unlikely that all three turbines fail at the same time, zero 
output despite sufficient wind is assumed to be caused by 
grid constraints and not turbine faults.   

The second category with the remaining data below 
expectations could be improved by regular monitoring and 
maintenance.  By applying the empirical performance 
curve to those data, the additional electricity production 
can be estimated, shown in the two columns on the right.  
They show a clear potential for significant improvement, 
while also showing that the potential purely given by the 
wind resource will not be achievable.  As a result, this 
method not only allows to identify sub-optimal 
performance but also provide a way to estimate a more 
realistic productivity than just using the mean wind speed 
and manufacturer’s data sheets.  

 

Figure 9.  Comparison of actual performance to potential 
performance. 
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7. Conclusions 

This paper has developed a method to evaluate the 
performance of small renewable installations which are 
often minimally monitored, only through logging the 
electricity production without any resource information or 
device health monitoring.  In the absence of a gold 
standard to train the performance evaluation against, an 
initial analysis was completed to provide a benchmark.  
This was then used to not only identify performance data 
falling outside that benchmark but also to assign a quality 
score. 

As such, this method appears to be robust and applicable 
to a range of small installation, including solar PV 
systems.  However, further development and validation of 
the methods is required, partly against more wind 
generators partly against other generation technologies, 
but also a more robust method in the creation of the 
benchmark is required.  This could either be done by in-
situ measurements – but that would come at an operational 
cost which may be beyond the operator’s means.  
Alternatively, a more robust method to infer the 
benchmark is proposed which would address the current 
bias introduced by the different likelihood of certain 
weather conditions prevailing.  This method is identified 
as the key next step to develop this method further. 
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