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Abstract. This article presents the modifications and

improvements that have been included over the classic 

formulation of the state estimation to be able to run in real 

networks with large power distribution systems. Improvements 

include a new penalty term that keeps bus consumption or power 

generation within an allowed band and the inclusion of dynamic 

elements such as voltage regulators and capacitor batteries. 

A complete algorithm is presented that is capable of operating on 

large power systems in near real time. This algorithm and the 

results have been tested with numerous cases of real distribution 

networks covering large geographical areas, obtaining very good 

results and demonstrating the enormous usefulness of this 

approach. 
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1. Introduction

The state estimation (SE) in power systems is a central 

piece for the supervision and quality improvement of these 

systems. SE receives field measurements from the remote 

units through a data acquisition system (SCADA). Using 

these measurements, the network inventory and the set of 

non-linear power equations, SE fine-tunes the state of each 

bus (the voltage module and angle) minimizing the 

weighted quadratic error, known as the Weighted Least 

Square (WLS) method. 

Among the benefits of this approach are the ability to 

handle errors in measuring equipment and to discern bad 

measures, but it is necessary to expand or modify the 

original formulation [1][2] for use in real large networks. 

Among the limitations of the approach are that they do not 

impose any restriction on the capacity to generate or 

consume of each bus (which is an unrealistic scenario for 

any distribution network) and that they do not contemplate 

dynamic elements such as batteries and voltage regulators 

whose behaviour depends on the value of the state in each 

iteration. 

In addition, it describes how to efficiently manage large 

networks with more than 100000 buses in a few minutes 

from the initial state and in a few seconds from the previous 

solution, which enables the use of the algorithm for near 

real-time monitoring systems. 

2. State estimation

The state estimator solves the well-known WLS 

optimization problem that tries to minimize the error of 

available measures: 𝑒𝑖 = 𝑧𝑖 − ℎ𝑖(𝑥1, 𝑥2 …𝑥𝑛).

Where z is the m-size vector of the available measurements 

and h is the vector of the nonlinear power equations 

dependent on the n-size state vector, with n being double 

minus one of the number of system buses. 

Therefore, the following objective function is defined: 

𝑓 = ∑(𝑤𝑖(𝑧𝑖 − ℎ𝑖(𝑥1, 𝑥2 …𝑥2∙𝑛)))2

𝑚

𝑖=1

= ∑(𝑤𝑖𝑒𝑖)
2

𝑚

𝑖=1

Where w is the weight vector of each measurement, which 

typically uses the inverse of the standard deviation of the 

measuring device as weight, i.e. 𝑤𝑖 =
1

𝜎𝑖

To find the minimum of the target function, partial 

derivatives are calculated and equalled to zero: 

𝐻𝑇 ∙ 𝑊 ∙ 𝑒 = 0 (1)

Where H is the Jacobian matrix of partial derivatives of size 

(m,n): 𝐻 =

[
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 and W is the diagonal matrix 
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of weights of size (m,m) and e is the vector of errors of size 

m. 

Equation 1 contains m nonlinear equations dependent on n 

variables that cannot be solved directly, which forces to use 

an iterative procedure such as Newton-Raphson which 

approximates nonlinear equations by their first term of the 

Taylor series, i.e.: 

ℎ𝑖(𝑥1, 𝑥2 …𝑥𝑛) ≈ ℎ𝑖(𝑥1
0, 𝑥2

0 … 𝑥n
0) + ∑ ∇𝑥𝑗

0
𝜕ℎ𝑖

𝜕𝑥𝑗

𝑛

𝑗=1

With this approximation, the problem becomes linear at the 

cost of needing to iterate until converging to a solution 

close to the optimum. Substituting h in equation 1 gives: 

𝐻𝑇 ∙ 𝑊 ∙ 𝐻 ∙ ∇𝑥 = 𝐻𝑇 ∙ 𝑊 ∙ 𝑒 (2)

Where grouping 𝐺 = 𝐻𝑇 ∙ 𝑊 ∙ 𝐻 and 𝑏 = 𝐻𝑇 ∙ 𝑊 ∙ 𝑒, it is

about solving the classic linear system 𝐺 ∙ 𝑥 = 𝑏 where G 

is usually called the gain matrix. 

The following section will give more details of the method 

used to solve this system and avoid numerical problems. 

In each iteration, the updated status vector is obtained and 

the new error e is calculated, stopping the iteration when an 

average error below a threshold is obtained [1]. 

3. Entering Restrictions

Equation 2 presents the basis of the state estimation 

algorithm. As can be seen, it does not apply any restriction 

to the active or reactive power that buses can consume or 

generate, which in practice generates mathematically 

correct but totally unrealistic solutions. 

To do this, a WLS problem can be solved with restrictions 

for some states: 

𝐴 ∙ 𝑥 = 𝑏 with 𝑎𝑖 < 𝑥𝑖 < 𝑏𝑖

This type of equations can have convergence problems, and 

introduces the difficulty of associating the power 

restrictions in the buses with the value of the states. 

The approach adopted by the authors is the introduction of 

an additional term in equation 2 that penalizes solutions that 

are outside the bands allowed for the desired buses. As will 

be demonstrated, it has excellent convergence properties 

and takes advantage of much of the calculations already 

made to form equation 2, so it barely introduces 

computational cost in its resolution. 

All buses are classified into two categories, passive buses 

as those that cannot consume or generate, and active buses 

as those buses that can, for example, a transformation 

center. These centers have some nominal values of power 

and installed generation, which gives a band of allowed 

power. 

Passive buses 

This case is directly treated by adding a measure of P and 

Q equal to zero with a weight x times greater than the 

highest weight available. 

It is also possible to formulate a WLS problem with 

equality restrictions to contemplate the values of P and Q 

equal to zero for these buses [4], although the authors have 

found the method of adding virtual measures, robust and 

simple, as long as no very high weights are used that can 

cause numerical problems. 

Adding these fictitious measures not only ensures that these 

buses do not consume or generate, but also practically 

guarantees that the redundancy factor is greater than 1, thus 

reducing the degrees of freedom of the system. 

Active buses 

This case requires a modification of the approach shown in 

the previous section. The first step is to check whether there 

is a real measure of P and Q, so that, if there is no such 

measure, an estimated fictitious measure of P or Q whose 

value is the midpoint of the permitted band and whose 

weight is fixed and x times lower than the equivalent real 

measures is added. 

This step has a double purpose, on the one hand, it guides 

the estimator to obtain values within the band and on the 

other hand, it assures that all the active buses have 

measurement (either real or fictitious). 

In this way, the error or penalty of a measure i of P or Q 

that is out of range is defined as: 

𝑒𝑝𝑖 = {

−ℎ𝑖 − 𝐶𝑖  𝑠𝑖 −ℎ𝑖 > 𝐶𝑖

ℎ𝑖 − 𝐺𝑖  𝑠𝑖 ℎ𝑖 > 𝐺𝑖

0 𝑖𝑛 𝑎𝑛𝑦 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

Where 𝐶𝑖 is the contracted or installed power value allowed

for that bus and 𝐺𝑖 is the generated power allowed for that

bus. 

By defining the same objective function for this new term, 

and applying the same criterion of minimizing error, the 

additional penalty term is obtained: 

𝐻′𝑇 ∙ 𝑊𝑝 ∙ 𝐻′ ∙ ∇𝑥 = 𝐻′𝑇 ∙ 𝑊𝑝 ∙ 𝑒𝑝

Where 𝐻′ is the same Jacobian matrix already calculated,

but with the rows to zero where the bus is not active. 𝑊𝑝 is

the diagonal weight matrix with zero values where the bus 

is not an active bus and with a fixed weight (x times the 

error of the most precise equipment) for all P and Q 

measurements of active buses whose estimated value is out 

of range, i.e. 𝑒𝑝𝑖 > 0.

Note that 𝐻′ is always multiplied by 𝑊𝑝 so it is not

necessary to obtain it, the matrix 𝐻 already obtained can be 

used. This formulation has the advantage of being 

equivalent to the one shown in equation 2, which allows to 
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reuse most of the calculations already made and minimizes 

convergence problems. 

 

Adding all the terms together gives the equation of the state 

estimation with restrictions: 

 

𝐻𝑇 ∙ (𝑊 + 𝑊𝑝) ∙ 𝐻 ∙ ∇𝑥 = 𝐻𝑇 ∙ (𝑊 ∙ 𝑒 + 𝑊𝑝 ∙ 𝑒𝑝) (3) 

 

As indicated in [2], the G matrix may present numerical 

problems of precision and rounding that may affect the 

convergence of the system, or in the best of cases, a greater 

number of iterations necessary for its resolution. 

 

Therefore, the authors recommend using the orthogonal 

factorization method that avoids calculating the G matrix 

and significantly reduces numerical problems: 

 

𝐻 = 𝑄 ∙ 𝑅 where �̃� = 𝐻 ∙ (𝑊 + 𝑊𝑝)
1/2 

 

Substituting in equation 3, it is obtained: 

 

𝐻𝑇 ∙ �̃� ∙ ∇𝑥 = 𝐻𝑇 ∙ (𝑊 + 𝑊𝑝)−1/2 ∙ (𝑊 ∙ 𝑒 + 𝑊𝑝 ∙ 𝑒𝑝) 

 

And considering that Q is orthogonal, 𝑄𝑇 = 𝑄−1, it is 

obtained: 

 

𝑅 ∙ ∇𝑥 = 𝑄𝑇 ∙ (𝑊 + 𝑊𝑝)
−1/2 ∙ (𝑊 ∙ 𝑒 + 𝑊𝑝 ∙ 𝑒𝑝) (4) 

 

Equation 4 that can be solved by direct substitution since R 

is an upper triangular matrix. This resolution method has 

been superior in all aspects to solving the G matrix by 

decomposition, avoiding possible numerical problems and 

needing fewer iterations to converge. 

 

4. Entering Dynamic Elements 
 

A dynamic element is defined as a component whose 

behaviour depends on the states, i.e. module or voltage 

angle. 

 

These components present the problem of introducing 

changes to the values already calculated in each iteration, 

such as changes in the Y-bus matrix. For this reason, they 

must be incorporated considering at all times that they have 

no impact on the efficiency of the algorithm so that it 

remains valid for large systems. 

 

Next, two dynamic elements are detailed, the voltage 

regulators and the capacitor batteries, where the first one 

implies changes on the Y-bus matrix, while the second one 

in the vector of z measures. 

 

Voltage regulators 

 

The voltage regulator is modelled as a transformer whose 

tapping changes in order to try to maintain a fixed setpoint 

voltage in the secondary. The unit diagram of an ideal 

transformer is shown below: 

 
Fig. 1.  Ideal transformer 

 

To include this model, the Y-bus matrix between buses i 

and j is modified as follows: [
|𝑡|2𝑌 −𝑡∗𝑌
−𝑡𝑌 𝑌

] 

The following algorithm is used to efficiently include the 

voltage regulator within the state estimation at the start of 

each iteration: 

• The new tap of iteration k is calculated: 𝑡𝑘 =
𝑉𝑐

𝑉𝑖
 , 

where 𝑉𝑐 is the setpoint voltage. 

• The new tap is compared with the previous one: 
|𝑡𝑘 − 𝑡𝑘−1| > 𝜀. In this case, real t is assumed, i.e. 

it does not apply phase changes. 

• If the above condition is met, the Y-bus matrix is 

updated as follows: 

 

𝑌𝑖𝑖
𝑛𝑒𝑤 = [𝑌𝑖𝑖] + (−𝑡𝑘−1

2 + 𝑡𝑘
2) ∙ 𝑌 

𝑌𝑖𝑗 = 𝑌𝑗𝑖 = −𝑡𝑘 ∙ 𝑌 

 

Note the incremental change on the 𝑌𝑖𝑖  component of the Y-

bus matrix, which implies a low computational cost and in 

successive iterations the tap increase is smaller until it falls 

below the established epsilon, which guarantees good 

convergence properties. 

 

Capacitor Batteries 

 

The capacitor battery is an element capable of injecting 

reactive to the bus to which it is connected with the 

following ratio: 

𝑄𝑖 = 𝑆𝑛 (
𝑉𝑖

𝑉𝑛
)

2

 

Where 𝑆𝑛 and 𝑉𝑛 are the nominal power and voltage of the 

equipment. 

 

To include this dynamic element, whose reactive injected 

depends on the voltage module of the bus to which it is 

connected, a virtual Q measurement is included with an 

accuracy equivalent to that of power equipment. 

 

The following algorithm is executed at the beginning of 

each iteration: 

• The new measure of iteration k is calculated:  

𝑄𝑖
𝑘 = 𝑆𝑛 (

𝑉𝑖

𝑉𝑛
)

2

. 

• The new measure is compared with the previous 

one: |𝑄𝑖
𝑘 − 𝑄𝑖

𝑘−1| > 𝜀. 

• If the above condition is met, the measurement 

value is updated in the z vector. 

 

In each iteration, the Q increment will be lower until it is 

below the established epsilon, which facilitates the 

convergence of the algorithm. 
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5. Considerations for large systems 
 

A key factor for the usefulness of a state estimation is to be 

able to execute it on real large systems, with hundreds of 

thousands of buses that distribute power to large 

geographical areas. 

 

In order to do this, several factors that have a direct impact 

on the efficiency of the algorithm must be taken into 

consideration. 

 

Generation of bags 

 

First, the number of bags in the study region is calculated, 

where a bag is defined as an area that do not have electrical 

connections with other areas. 

 

In this case, the simplification of assuming that the high 

voltage substation node is a slack node is introduced, so 

there is no interconnection upstream of the substations. 

 

These bags do not have any Y-bus matrix element that 

connects them, so two bags are defined as disconnected if 

they meet condition 𝑌𝑖,𝑗 = 0,with 𝑖 ≠ 𝑗 for all buses i of 

bag A and for all buses j of bag B. 

 

A state estimation is executed for each bag in different 

threads in parallel, taking advantage of the multi-threading 

power of the current processors, obtaining a double benefit, 

on the one hand, smaller problems are solved, with a 

smaller number of buses and on the other hand they are 

executed in parallel, significantly reducing the necessary 

calculation time. 

 

Once a bag has been resolved, the state vector of the bag is 

stored in memory so that successive executions are carried 

out in near real time, and can be used for monitoring and 

system operation. 

 

When a maneuver is performed in one of the bags, it is 

necessary to discard the previous state and run the 

algorithm again, since the Y-bus matrix itself has changed. 

 

Bus reduction 

 

To increase performance, it is recommended to reduce the 

Y-bus matrix which, without loss of precision or 

information, reduces the dimensions of the matrix. 

 

To do this, all nodes that meet the following conditions are 

iterated: 

 

• That does not contain an active element, such as a 

center, a battery, etc. 

• That is not a bar. 

• That has less than three segments connected. 

• That does not have a measurement associated, 

either directly to the bus or any of the segments it 

connects. 

 

On all the nodes that fulfill the previous conditions, a Kron 

reduction is made to eliminate this bus from the matrix, 

where the new values of the Y-bus matrix are: 𝑌𝑗𝑘 (𝑛𝑒𝑤) =

𝑌𝑗𝑘 −
𝑌𝑗𝑝∙𝑌𝑝𝑘

𝑌𝑝𝑝
, being p the bus to eliminate. 

 

The new reduced Y-bus matrix is obtained, deleting all the 

rows and columns of the eliminated p-buses. This matrix, 

which is electrically identical to the original, and where no 

information has been lost, has much smaller dimensions 

than the original and, therefore, has a very positive impact 

on calculation times. 

 

Sparse Algebra 

 

The Y-bus matrix directly reflects the connections between 

the buses, therefore, except for their diagonal, most values 

will be zero. This is true even in grid networks, since most 

buses are connected to other buses by a few segments. 

 

To take advantage of this fact, sparse algebra must be 

applied to the mathematical operations that are performed. 

This concept should be extended to all calculations, not 

only to the manipulation of matrices, e.g. power equations, 

Kron reduction, etc., it should only be iterated by elements 

that are different from zero rather than by the whole row or 

column of the matrix. 

 

The only point where it is possible that an improvement is 

not obtained is in the resolution of the system 𝐺 ∙ 𝑥 = 𝑏, 

since in general the gain matrix is not as dispersed as the 

Y-bus or the Jacobian matrix, for that reason, the authors 

solve equation 4 with dense matrices. 

 

Using sparse algebra correctly is one of the improvements 

of greater impact that can be applied to the state estimation, 

being essential its use for real large systems with hundreds 

of thousands of buses. 

 

Stop condition 

 

The stop condition described in the second section [1] is too 

simple and not very useful for large real systems, with 

restrictions and dynamic elements such as those described 

in this article. 

 

For this purpose, the authors present a specific stop 

algorithm with better precision and convergence properties: 

 

1. The step parameter 𝑝 = 1 is set. 

2. The increment of the state vector ∇𝑥𝑖 is obtained 

according to equation 3 for iteration i. 

3. Calculate the new state vector 𝑥𝑖+1 = 𝑥𝑖 + p ∙ ∇𝑥. 

4. The absolute mean value of all the errors of the not 

eliminated measurements (MAE) is calculated. 

5. If 𝑀𝐴𝐸𝑖 < 𝑀𝐴𝐸𝑖−1 goes back to point 1 and 

continues to iterate. 

6. If 𝑝 > 𝜀, reduce the step to half 𝑝𝑛𝑒𝑤 = 
𝑝

2⁄ , and 

go back to point 3. 

7. Otherwise, the best possible estimate is the one 

obtained by 𝑥𝑖, and the execution is finished. 

 

This algorithm has the virtue of not fixing an objective 

error, since it allows iterate while it fulfills the condition of 
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improving the previous result, besides allowing to shorten 

the step when it is needed, improving notably its properties 

of convergence. 

 

Bad data 

 

One of the virtues of the state estimator is its ability to 

detect and correct possible bad measures. In [1][2][3] the 

detection of anomalous measures is described based on the 

fact that the weighted sum of Gaussian errors squared 

follows a chi-square distribution with 𝑘 = 𝑚 − 𝑛 degrees 

of freedom. 

 

In this way, it is possible to check at a confidence level 𝛼, 

if the condition is satisfied that there are no anomalous 

measures according to the equation: Pr(𝑓 < 𝑋𝑘,𝛼
2 ) = 1 − 𝛼 

 

This approach, while correct, has several drawbacks: 

 

• It is necessary to know the actual (and not 

estimated) standard deviation of all field 

measuring devices. 

• It assumes that the only source of errors comes 

from measuring devices. This assumption is too 

simplistic, since in any real SCADA, there are 

many other possible sources of errors or 

inaccuracies, such as inverted measurements, 

frozen data, time delays, etc. 

 

All this leads to the proposal of an alternative method for 

detecting anomalous measures, which is simpler and more 

direct. Therefore, the standard error is calculated for all real 

measurements at the end of the iterations: 𝑒𝑖 =
|𝑧𝑖−ℎ𝑖|

𝜎𝑖
. 

 

The largest calculated error of the vector e is obtained, and 

if this error is greater than a fixed value, such as 3 (whose 

meaning is that it exceeds three times the standard deviation 

of the measuring device), the measurement is eliminated 

and iterated again. Each time, a single measurement is 

eliminated, since one bad measurement has the ability to 

impact the entire state vector. 

 

As a summary of all that has been explained in this section, 

the following flowchart is shown: 

 
Fig. 2. State estimation flowchart  

 

6. Case study 
 

The results of a case study corresponding to a region of 

eastern Spain are presented. For reasons of confidentiality, 

centres and substations names have been masked. 

 

The study network contains the following elements: 

 

• 169147 buses. 

• 44217 measures. 

• 19100 centers. 

• 106 power stations. 

 

The execution of the algorithm shown in figure 2 obtains 

the following results: 

 

• 88 independent bags. 

• 321 bad measures detected (0.7%). 

• 16.75 iterations on average per bag. 

• A mean absolute error of 0.135. 

• Total time of execution of 2.7 minutes. 

 

The execution times of each bag once executed the first 

time, are less than a second, which allows monitoring of the 

network almost in real time. 

 

To be able to inspect the results, a network representation 

of the reduced Y-bus matrix was used, where an edge is 

Start

Get reduced Y-Bus

Multi-Threading

Initialize 

states

Solve Eq. 4 Bad measure?

Yes

Show results and 

run again (real 

time)

New maneuver 

in the bag?

No

Yes

No

YesStop condition

Tune dynamic 

elements

Get all bags

No

Delete 

measure

Get measures
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represented for each non-zero element that does not belong 

to the diagonal. 

 

This type of representation has been very useful to explore 

and validate the results obtained by the state estimator. 

 

The following figure shows the representation of a portion 

of the case study: 

 

 
Fig. 3. Graph representation of the reduced Y-Bus matrix 

 

7. Conclusions 
 

A novel algorithm has been presented to execute a state 

estimation in large power distribution systems with 

hundreds of thousands of buses, capable of incorporating 

power and generation restrictions in the buses and naturally 

includes dynamic elements such as voltage regulators and 

capacitor batteries. 

 

The solutions obtained by the state estimation with 

restrictions are much more faithful to reality as it forces to 

seek those solutions allowed by the configuration of 

elements capable of consuming or generating power, such 

as distribution centers, distributed generators, etc. 

 

Likewise, the algorithm has been designed to work with 

large systems with hundreds of thousands of buses with the 

intention of being able to run in near real time to be 

incorporated into existing monitoring and management 

systems as another source of information. 

 

The algorithm and the results have been tested with 

numerous cases of real distribution networks covering large 

geographical areas, obtaining very good results and 

demonstrating the enormous usefulness of these tools for 

the detection of anomalous measures and therefore for the 

improvement of the quality of information throughout the 

system. 

 

There is an increasing trend towards scenarios in which a 

large number of redundant measures are available, and it is 

essential to be able to deal with this amount of information 

and deal correctly with possible measurement errors. This 

scenario will only increase, where redundant measures are 

already available even in low-voltage networks, so it will 

be essential to adopt similar techniques at all levels of 

energy distribution. 
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