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Abstract. Automated decision tools, such as advanced 
energy management systems, are required to involve the 
electrical grid users in energy flexibility services. This paper 
focuses on the prediction models as a substantial part of 
decision strategy in advanced energy management systems and 
on advanced energy management systems as a tool that supports 
the active involvement of electrical grid users in energy 
flexibility services. Prediction models' desired properties are 
self-establishing and self-adaptation, which require new 
solutions in data selection, filtering, processing and model 
learning. Some of these properties are investigated within this 
paper. 
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1. Introduction 
 
The electrical grid users should be empowered to be 
involved in energy flexibility services [1], which means 
they can decide under which conditions they are ready to 
provide these services. To implement the European green 
deal [2], [3] the usage of renewable energy should be 
improved substantially. Unfortunately, the existing 
electrical distribution grids are typically not oversized, so 
they can accommodate a limited share of renewable 
energy sources and additional loads before grid 
infrastructure is overloaded or the voltage profiles are 
violated. The active involvement of distribution grid 
users in grid operation through the energy flexibility 
services can further extend this share.  
Nowadays, grid users are too busy to permanently 
influence the operating modes of their devices to support 
grid operation. This process should be automated by 
introducing advanced energy management systems 
(EMSs) that are ’’smart’’ enough to support the grid 
operation and simultaneously provide benefits for their 
owners without reducing their quality of well-being and 
living [4]. Moreover, the advanced EMSs can also 
support the building up of local nano- or microgrids [5] 
with at least limited island (off-grid) operation ability. 

The question is how EMSs can become ’’smart’’. They 
must provide bidirectional data exchange with all devices 
connected to them, know the actual status of each device 
in each time instant and predict their operation in the 
future considering different lengths of the prediction 
horizon. The owners of EMSs have no expert knowledge 
and no time to build up prediction models of individual 
devices. Moreover, the behaviour of individual devices 
can change over time based on influential external 
parameters such as climate conditions and ageing. Thus, 
the prediction models must be capable of self-
establishing and self-adaptation. The following section 
provides a deeper insight into a process that can give 
prediction models self-establishing and self-adaptation 
capability [6]. 
  
2. Prediction models 
 
The prediction horizon for the prediction models 
considered in this work is in the range of several minutes 
to several hours. The models are used as a support for 
decisions in an advanced EMS, while the procedure that 
leads to decisions is not in the scope of this work. 
Suppose the tariffs change (implicit energy flexibility) or 
a demand response request is received (explicit energy 
flexibility). In that case, the EMS must know the current 
status of all devices and systems connected to it. The 
prediction models are afterwards used to predict the 
consequences of different EMS actions on operating 
conditions of all devices, the owner’s quality of living in 
the time horizon of several minutes to several hours, and 
the benefits that can be provided for the owner. Based on 
the performed analysis of different scenarios, the EMS 
decides what level of energy flexibility services will be 
provided. 
 
Fig. 1 shows how the offline and online data are 
processed to achieve the self-establishing and self-
adaptation capability of applied prediction models. The 
red blocks mark the offline workflow used for the model 
establishment and its adaptation, while the green blocks 
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mark the models in an online workflow used in the EMS. 
In this paper, the models were established and tested for 
the three simple devices an air-conditioner, a water 
heater, and a refrigerator. The considered data are the 
electrical input power, external temperature, internal 
temperature and target temperature in all discussed cases. 
 
2.1 Data preprocessing through filtering 
 
To alleviate the negative impact of the sampling and 
quantization noise in the Internet of Things (IoT) data on 

the forecasting performance [7], we used filtering. 
Gaussian filter was used to preprocess the data in the 
offline setting, and Kalman filter in the online (real-time 
forecasting) setting. We provided the in-depth rationale 
and analysis of their respective uses and conducted an 
experiment determining the optimal parametrization in 
[6]. The effect of the filtering can be seen in Fig 1. in the 
graph on the bottom left. 
 

 
Fig. 1.  Online and offline workflow in establishing, adapting and exploiting the prediction model. 
 
2.2 Prediction model architecture 
 
The greatest challenge of developing a forecasting model 
suitable for lifelong autonomous operation is achieving a 
reliable and efficient self-establishment and self-
adaptation. To that end, we propose an architecture based 
on a neural network (NN). The advantage of NNs over 
traditional approaches, such as autoregressive or 
exponential smoothing models, is that they do not require 
expert knowledge for their initialization or correction [8], 
allowing us to develop automatable algorithms for 
prediction models’ initialization and adaptation. 

More specifically, we propose a model based on the Long 
Short-term Memory (LSTM) architecture [9]. LSTM is a 
type of a recurrent neural network (RNN), which are 
specifically designed to model the temporal  correlation 
within the timeseries data. We described the proposed 
architecture, training details and conducted experiments 
determining the optimal hyperparametrization of the 
forecast model and the training process in [6]. 
 
2.3 Prediction model self-adaptation 
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The adaptation of the prediction model to changes within 
the data is key for maintaining the desired forecasting 
accuracy, needed for successful operation of the EMS. 
Physical properties of the electrical devices are subject to 
change due to material deterioration, as well external 
conditions may change (such as ambient temperature). 
Furthermore, we cannot assume the training data for the 
establishment of the prediction model to be complete, 
considering all possible operating conditions. It is 
desirable that the model can be established on the minimal 
training data, which may not include all operation modes 
of the device, and will definitely not include different 
climate seasons, or even weather conditions. 
When adapting the model to the changes, we wish to fulfil 
the following criteria: 

• Model should achieve accurate prediction on the 
new patterns. 

• Model should retain good forecast accuracy on 
the old patterns. 

• Adaptation should be time and space efficient. 
One naïve approach to adapt the model would be to simply 
train it on the new patterns. While this approach minimizes 
the training costs and model does achieve accurate 
prediction on the new patterns, it “forgets” the previous 
patterns, which is often referred to as “catastrophic 
forgetting” [10]. The latter naïve approach of training the 
model, based on old and new data, mostly solves the 
problem of forgetting. However, it requires storage for all 
historical data and maximizes the training costs, which is 
often unforgivable in the setting of EMSs, which should be 
implemented on the low performance hardware to reduce 
the initial costs, operational costs and footprint required 
for mass implementation. 
Fortunately, we can achieve the benefit of the second 
approach already by only repeating the model training on 
the small subset of the samples from previous patterns 
(historical data). We have found out, that for most device 
models, by randomly selecting at least 1/16th of the 
historical samples can practically completely alleviate the 
effect of catastrophic forgetting. Furthermore, we have 
developed an algorithm of selecting this smaller subset of 
samples from historical data, which further improved the 
forecasting accuracy both on old and new patterns, 
compared to the random selection. An in-depth description 
of the algorithm and the evaluation of adaptation 
approaches is presented in [6]. 
 
3. Examples of use in the EMS 
 
The experimental EMS used for testing the prediction 
models consists of fully controllable units in the form of 
3.5 kW PV systems, 5kW and 10 kWh LTO battery 
storage, 1.8 kW water heater, 300 W refrigerator, and three 
air conditioners (1 kW electrical power). The discussed 
experimental system is capable of limited island operation. 
This work focuses on the prediction model of the water 
heater. 
Following is the description of the scenario in a simple 
EMS, demonstrating the use of the prediction models in 
the autonomous decision logic. We demonstrate the use of 
prediction model in the example, containing the following 
constraints: 

• Assuring user comfort and quality of living by 
controlling the temperature within predefined 
bounds. 

• Utilizing the PV system production - as much as 
possible. 

• Scheduling the electrical devices to control peak 
consumption (peak shaving). 

• Demand response activation. Sharing the energy 
from the battery and PV system with the grid. 

• Prediction model adaptation to changes in the 
device behaviour. 

The example is demonstrated in Fig 2. and Fig 3. The 
former depicts the measured and predicted temperatures 
within the water heater, whereas the latter depicts the 
water heater energy consumption and solar energy 
production. The data displayed in graphs was collected 
from the sensors over the period of eight hours, while the 
data used to establish the models for each device spanned 
over four weeks. The forecast horizon used on the graph 
is two hours. The user predefined rules on the interval 
were that the temperate may not fall below 50°C or 
exceed 60°C. 
Finally, we provide and discuss the example of prediction 
model adaptation. 

 
Fig. 2. Measured values and forecasts for water heater 
temperature. 

 
Fig. 3. Solar production and water heater consumption. 
 
3.1 Managing user predefined rules 
 
Essential feature of the EMS is ensuring the comfort and 
quality of living of the user. This is most commonly 
managed by defining the boundaries of allowed 
temperature (room temperature for air conditioners, water 
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temperature for water heater, etc.). Predicting when the 
temperature will either fall below the permitted boundary 
or exceed it is key for all following use cases of the 
forecasting models. 
The example of this is seen on Fig 2. between 11 and 
12am. The forecast model predicts that the temperature 
will fall below the desired threshold ahead of time, 
allowing EMS to appropriately react to possible demand 
response activations. 
 
3.2 Utilizing the PV production 
 
Converting solar energy to fill the battery introduces 
considerable energy loss, as well as the battery discharging 
itself over time. Instead, we aim to use the solar energy 
directly to heat up water, control the room temperature 
etc., when possible. 
This is seen at 12:45, 13:15 and 13:55 on Fig. 3, where 
solar energy production reaches the required to supply 
power the water heater. Despite the fact, that the 
forecasted water heater temperature would not fall below 
the threshold, water heater is activated to take advantage of 
the solar production. In the case of multiple devices, at 
such scenario, EMS can use forecasts for all connected 
devices and assign them priorities based on the importance 
of individual devices and how far from the threshold their 
forecast is. The priorities can then be used to schedule 
devices’ activities within the solar production capacity. 
 
3.3 Scheduling the electrical devices to control peak 
consumption 
 
In the case that multiple devices’ temperatures would 
reach the permitted boundaries at the same time, EMS can 
use the prediction models to detect this event in the future 
and schedule the devices’ activity pre-emptively to prevent 
peak consumption (peak shaving). 
 
3.4 Demand response activation 
 
In the case of demand response request, EMS can, based 
on forecasts of controlled appliances, decide what is 
acceptable reduction of load power and in some cases even 
how much power can be transferred to the grid and how 
long can it support the grid operation. 
This can be seen on Fig. 2 after 14:00, where forecasts 
provide EMS with information, that the water heater’s 
temperature will not drop under the permitted threshold. 
 
3.5 Prediction model adaptation 
 
Proper adaptation of prediction models is essential for 
proper operation of EMS. This subsection demonstrates 
superiority of the proposed model adaptation model in 
comparison with the methods based on the catastrophic 
forgetting. The results obtained by the proposed model 
adaptation method described in section 2.3 are compared 
with the ones obtained without adaptation and those 
obtained using a naïve approach to model adaptation that 
leads to catastrophic forgetting. 
The example depicts a scenario, in which the model was 
established on the (incomplete) training data, including 
temperature range from 40°C to 50°C. The water heater's 

operation then changed with the changed user rules, 
influencing the EMS controlling the water heater. The 
temperature ranges then changed to 50°C to 60°C and the 
device’s activity became more sporadic. An interval from 
the model establishment period is depicted in Fig. 4 
(temperature range from 40°C to 50°C), and the interval 
from the latter period in Fig. 5 (temperature range from 
50°C to 60°C). The intervals of observation in Figs 2, 3 
and 5 are identical.  
In Fig. 5, which depicts the model predictions based on 
new patterns, that were not present in the data used for 
model establishment, we can see, that the model’s 
accuracy without any adaptation (blue) is very poor. 
While the naïve method of adaptation does improve the 
accuracy on the new patterns, it drastically worsens 
model’s accuracy on the old patterns, which is evident in 
the Fig 4. where we can observe the effects of 
catastrophic forgetting (orange). Finally, we can observe 
that the proposed adaptation method (green) performs 
well on both new and old patterns. 
 

 
Fig. 4. Comparison of the different adaptation modes 
based on historical data (old patterns) 
 

 
Fig. 5. Comparison of different adaptation modes based 
on recent data (new patterns) 
 
4. Conclusion 
 
The paper discusses the importance of energy 
management systems for the involvement of electrical 
grid users in electricity flexibility services and the role of 
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prediction models inside energy management systems as a 
part decision-making procedure. 
Presented is the workflow for self-establishment and self-
adaptation for lifelong function of prediction models in the 
energy management system. The use cases for the 
predictions are presented on real-world examples. 
The comparison of predicted temperature time behaviour 
obtained by the proposed model adaptation with the 
measured ones shows a good agreement. This agreement is 
not good when model adaptation is not used, or a naïve 
approach to model adaptation is applied. 
In future work, authors intend to research the extended 
usage of prediction models in EMS autonomous decision 
algorithms and the possibilities of taking advantage of 
transfer learning to improve and accelerate the self-
establishment of the models and reduce the need for model 
self-adaptation.  
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