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Abstract. In the study of wind turbines, one of the most 
relevant and useful indicators is the power curve. It has been 
shown to be of paramount importance in evaluating turbine 
performance and therefore reducing operation and maintenance 
(O&M) costs. Various techniques can be applied to model and 
obtain the shape of this curve, which relates the electrical power 
generated by a turbine to the wind speed. Statistical copulas are 
used in this paper, a tool used in other fields such as econometrics, 
and whose potential lies in its ability to capture the complex 
dependency between the variables involved. In particular, the 
Frank copula is applied to obtain a probabilistic model of the 
power curve of a wind turbine. This model is compared with the 
Gaussian Mixture Model, a technique widely used to obtain 
parametric probabilistic models. As a result of this comparison, it 
is observed that the Frank copula model fits the power curve of the 
wind turbine with greater precision and reliability, which would 
allow its use for prediction and fault detection. 
 
Keywords. Wind turbine, O&M, power curve, 
probabilistic model, statistical copulas, Frank’s copula. 
 
1. Introduction 
 
The energy sector is considered one of the most important 
strategic sectors of any country, and therefore, it has a 
notable projection for the future. In this sense, during the 
last decades significant efforts have been made to make a 
gradual transition from the different traditional energy 
sources towards more sustainable and environmentally 
cleaner options, as well as to provide them with 
technologies that improve their efficiency [1-2]. 
 
Among these energy sources, wind turbines (WT) stand out, 
both offshore and on-land. However, in order to make 

electricity generation profitable with these infrastructures, 
it is necessary to provide them with tools that allow them 
to maximize their performance and detect failures, thus 
reducing the costs associated with their operation and 
maintenance (O&M). 
 
It has been observed that one of the best indicators to 
evaluate the operating conditions of a turbine is its power 
curve [3], which relates the electrical power generated 
based on the wind available at that moment. It is a unique 
function for each specific turbine. However, modelling 
this curve is not a simple task since its shape is not only 
non-linear and complex, but also depends to a large extent 
on the environmental conditions of the site and the 
methods used to acquire the signals. Therefore, a 
successful approach is the use of data-driven algorithms 
[4-5]. 
 
Different techniques have been used to model power 
curves, and some surveys have been published on this 
topic [6-8]. To mention a few examples, Pelletier et al. [9] 
use a multilayer perceptron artificial neural network to 
model the power curve in a wind farm with 140 wind 
turbines. Rogers et al., in [10] proposed the use of a 
heteroscedastic Gaussian process model for modelling. 
This allows it the elimination of the need to specify a 
parametric functional form for the power curve and the 
automatic quantization of the variance in the prediction. 
Kusiak et al. [11], using a genetic algorithm, compares 
power curves with a logistic function of 4 parameters. 
 
One of these tools are the statistical copulas. Specifically, 
the one proposed here, Frank's copulas, have been 
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exploited in various energy-related applications. To cite 
some works, in [12] they are used for the stochastic planning 
of an integrated energy system. Singh et al. [13] derive 
intensity-duration-frequency (IDF) curves from the 
bivariate analysis of rainfall frequency using this copula. In 
[14], they examine the development of copula models and 
their applications in the areas of energy, fuel cells, forestry, 
and environmental sciences. 
 
In this work we will focus on the application of Frank’s 
copulas to find a parametric probabilistic model of the 
power curve of a wind turbine. It will be used to estimate 
the expected value of the generated power, as well as its 
associated uncertainty. In order to compare the suitability of 
the proposed technique, it will be compared with one of the 
most widespread methods: the Gaussian mixture model. 
 
The structure of the rest of the paper is as follows. Section 
2 describes the methodology applied and the metrics used 
to evaluate the models. In Section 3, the data used and the 
pre-processing carried out on the data are presented. Section 
4 is dedicated to the discussion of the results. The article 
ends with the conclusions and future research lines. 
 
2. Methodology 

 
A. Gaussian mixture model 

 
Finite mixture models are used to describe the probability 
density function of a population consisting of several 
clusters with different underlying distributions. As the name 
suggests, it is assumed that the total population is a finite 
mixture of several independent components or modes. For 
continuous variables, we can assume that all clusters are 
modelled as Gaussian distributions, each with different 
parameters (mean and covariance). This technique is known 
as a Gaussian Mixture Model (GMM) [15-16]. 
 
For the bivariate case, let 𝜓𝜓(𝑥𝑥1, 𝑥𝑥2; Θ) be the required 
probability density function, where Θ is the set of 
parameters, mean and covariance, of these Gaussian 
distributions. Equation (1) holds: 

 
𝝍𝝍(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐;𝚯𝚯) = ∑ 𝜶𝜶(𝒌𝒌)𝝓𝝓𝑴𝑴

𝒌𝒌=𝟏𝟏 �𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐;𝜽𝜽(𝒌𝒌)�          (1) 
 
where 𝜶𝜶(𝒌𝒌)is the mixing proportion of the M clusters (the 
sum of all alphas will be equal to 1) and 𝜽𝜽(𝒌𝒌) is the matrix 
of mean and covariance of each k with 𝝓𝝓�𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐;𝜽𝜽(𝒌𝒌)� the 
probability density of cluster k [16]. 
 
For the necessary calculations, MATLAB software has been 
used, which includes the pre-defined fitting function 
fitgmdist, which calculates the parameters of the model 
obtained in the element given by function gmdistribution. 

 
B. Copula models: Frank copula 
 
Statistical copulas are families of mathematical functions 
capable of relating dependent variables with a complex 
correlation between them. On the one hand, they help us to 
separate the marginal distributions and, on the other hand, 
they give information about how they are related to each 

other. According to Sklar's theorem [17], which 
establishes the pillars of copula theory, the probability 
density function 𝒇𝒇(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) for a bivariate case can be 
decomposed according to expression (2): 
 

𝒇𝒇(𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐) = 𝒄𝒄(𝒖𝒖𝟏𝟏,𝒖𝒖𝟐𝟐)𝒇𝒇𝟏𝟏(𝒙𝒙𝟏𝟏)𝒇𝒇𝟐𝟐(𝒙𝒙𝟐𝟐)            (2) 
 
Where 𝐟𝐟𝐢𝐢 denotes the marginal distribution function of the 
i-th variable (𝒙𝒙𝒊𝒊), 𝒖𝒖𝒊𝒊 denotes the cumulative distribution 
function of these variables, and 𝒄𝒄: [𝟎𝟎,𝟏𝟏]𝟐𝟐 → ℝ is the 
copula function that relates these cumulative density 
functions. 
 
There are many families of parametric copulas such as 
Clayton, Frank, or Gumbel, among others [18]. The 
selection of one or another depends on the data and level 
of tail dependence presented. High tail dependence is 
equivalent to a narrowing of the scatter of the observed 
data around its extremes. In the case of power curve of a 
wind turbine, it presents a strong correlation in both 
extreme values of the distribution (both for high and low 
values). Therefore, a good choice will be the Frank copula, 
a type of Archimedean copula. From [19], these Frank 
copula functions respond to equation (3): 
 

𝒄𝒄𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒌𝒌(𝒖𝒖𝟏𝟏,𝒖𝒖𝟐𝟐,𝜹𝜹) = 𝜹𝜹𝜹𝜹𝒆𝒆−𝜹𝜹(𝒖𝒖𝟏𝟏+𝒖𝒖𝟐𝟐)

[𝜹𝜹−�𝟏𝟏−𝒆𝒆−𝜹𝜹𝒖𝒖𝟏𝟏��𝟏𝟏−𝒆𝒆−𝜹𝜹𝒖𝒖𝟐𝟐�]𝟐𝟐
        (3) 

 
where 𝜹𝜹 = 𝟏𝟏 − 𝒆𝒆𝜹𝜹 and 𝜹𝜹 is the copula parameter that best 
fits the data. The higher this value is, the more pronounced 
the dependence between the two variables. 
 
C. Evaluation metrics 

 
In order to quantify the goodness of the fitting of the Frank 
copula model to the power curve, we calculate the 
Bayesian information criterion (BIC) and the averaged 
normalized root mean squared error (NRMSE) over the 
mean. 

The BIC is commonly used to select the most appropriate 
parametric model from a finite range of models [20]. It is 
calculated from the maximum likelihood function value 
obtained by the considered model. For the present case, as 
we work with continuous variables, the value of this 
function is equal to the sum of the posterior probability 
density function value given the model parameters (θ) at 
every point of the dataset. That is, the BIC is given by 
equation (4) 

𝐵𝐵𝐵𝐵𝐵𝐵 = −2∑ ln p(𝑥𝑥1(𝑖𝑖), 𝑥𝑥2(𝑖𝑖)| 𝜃𝜃) + 𝑝𝑝 ∙ ln(𝑁𝑁)𝑁𝑁
𝑖𝑖=1  (4) 

where N represents the total number of points and 𝑝𝑝 is the 
number of parameters. For the case of the Frank copula, 
𝑝𝑝 = 1, since the only parameter of the model in equation 
(3) is δ. For the GMM, the number of parameters 
according to [21] is given by equation (5): 

𝑝𝑝 = 𝑚𝑚(1 + 𝑑𝑑 + 𝑑𝑑(𝑑𝑑+1)
2

)                             (5) 

where 𝑚𝑚 denotes the number of modes or clusters (in our 
case 3) and 𝑑𝑑 is the data dimensions (in our case 2). That 
is, for the GMM, 𝑝𝑝 = 18. 

https://doi.org/10.24084/repqj21.378 512 RE&PQJ, Volume No.21, July 2023

http://www.nematrian.com/ArchimedeanCopulas.aspx


According to equation (5), it can be observed that it includes 
a term 𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙(𝑁𝑁) that penalizes overly complex models 
which could lead to overfitting or loss of generalization The 
lower the value of BIC, the better the model considered. 

The other evaluation metric used, NRMSE, provides the 
total error of the model, i.e., the difference between the 
observed and the estimated values. This quantity is 
calculated according to equation (6): 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1
𝑦𝑦
�∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

       (6) 

where 𝑦𝑦�𝑖𝑖 is the estimated value of the model for each point 
of the dataset, 𝑦𝑦𝑖𝑖 is the observed value of each dataset point, 
𝑦𝑦 is the mean of the observed data, and 𝑙𝑙 is the total number 
of points of the model. Like the BIC, the lower this value is, 
the better the model performs. 

 

3. Dataset and pre-processing 
 
The dataset used is available in Kaggle [22]. Data have been 
obtained from an onshore wind turbine located at the 
Yalova wind farm (Turkey). The wind turbine is a blade 
pitch regulated Nordex N117 with rated power of 3,6 MW. 
The main features are: cut-in wind speed of 3 m/s, cut-off 
wind speed of 25 m/s, and rated wind speed of 13 m/s. It has 
three blades with a total diameter of 117m. 
 
The dataset consists essentially of two variables acquired 
through a SCADA system with an average acquisition time 
of 10 minutes over a period of one year. These variables are: 
generated electrical power (kW) and wind speed (m/s). For 
the case of study, data from August and September of 2018 
are used, with a total of 8425 points. In figure 3 it can be 
seen the raw dataset: 
 

 
Fig.3 Raw dataset 

 
A. Data pre-processing 

 
Before proceeding with power curve modelling, data must 
be cleaned from anomalous values. This cleaning is carried 
out in two phases: 

1) Rejection of data with zero or negative power, as 
well as data with indeterminate values. 

2) Removal of outliers. These outliers are 
characterized by being isolated and because they 
do not fit in any prior pattern. Their nature is due 
to the fact that since the data are acquired with an 
average of 10 minutes, it is possible that within 
that time interval the turbine has changed its 
operating state (from on to off, or vice versa), 
causing an erroneous average power value. To 
remove these points, the power curve is divided 
into intervals of 0.5 m/s and its mean and 
standard deviation are calculated, as specified by 
the corresponding international standard, IEC 
61400-12-1:2017 [23]. Any point that deviates 
±3σ from its corresponding interval is considered 
an anomalous point and will be rejected. 

Figure 4 shows the dataset after performing the first phase 
of the pre-processing (rejection of data with zero or 
negative values). The red line represents the mean of each 
interval, and the error bars represent 3σ on both sides of 
the mean. All points higher or lower than these bars are 
eliminated. 

 

 
Fig. 4 Dataset after the first phase of pre-processing 

and its corresponding IEC curve 
 

 
Fig. 5. Dataset used in the models 

 
In Figure 5, the cleaned dataset after second phase of pre-
processing is shown. It will be used to evaluate the 
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proposed models. A total of 7570 points are used in the 
models. 
 
4. Discussion of the Results 
 

For the selection of Frank’s copula parameter 𝛿𝛿 (equation 
5), first it is necessary to calculate the marginal distributions 
of the two variables, fi, of the dataset. To do this, we use a 
non-parametric distribution fitting with kernel smoothing 
function estimation. Marginal histogram of power and wind 
speed are shown in figures 1 and 2, respectively. The red 
line indicates the fitting of the curve. The applied 
bandwidths are 0.32 and 7 respectively. 

 

 
Fig. 1 Marginal distribution of wind speed 

 
Fig 2. Marginal distribution of power. 

 
Using these marginal distribution functions, we are now 
able to estimate which Frank’s copula best fits the data via 
maximum likelihood method. As a result, a value of 𝜹𝜹 = 𝟕𝟕𝟎𝟎 
is obtained. Figure 6 shows the transformed power curve in 
the copula space. 
 

 
Fig. 6. Transformation of the power curve into the copula space 
 
The higher the value of δ, the greater the dependence 
between the variables. Or in other words, the data will be 
more concentrated around the diagonal (red line in figure 
6). Therefore, a high correlation in the variables is 
observed and proves the right choice of the Frank copula 
to model the power curve. 
 
Figures (7a) and (7b) show the models obtained with the 
GMM and Frank’s copula, respectively. The joint 
probability density of the power curve overlaid with the 
dataset is plotted. 
 

 

 
Fig. 7. Results of the models: a) GMM, b) Frank’s copula 

 
Visually, it can be seen how the copula method fits the 
power curve better than the GMM, which is not able to 
capture its shape well because it does not find a good 
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representation of the three operational modes of a wind 
turbine. 
 
Table I shows a summary of the evaluation metrics obtained 
for the two models. 
 

Table I. – Evaluation metrics 
 BIC NRMSE 
Frank’s Cópula  125500 0.084 
GMM 129880 0.093 

 
Regarding the NRMSE, an improvement of the Frank’s 
copula over the GMM is observed. If we consider the BIC, 
a significant difference in the performance of the Frank’s 
copula method is also obtained. 
 
5.  Conclusion and future work lines 
 
In conclusion, we have seen how it is possible to apply 
statistical copulas to the modelling of a wind turbine power 
curve and how they offer us the ability to faithfully capture 
the nonlinear and complex nature of this curve. 
 
As future works, other variables could be included to further 
improve the model, such as rotor speed, pitch blade or 
ambient temperature. In addition, this model could be 
applied to evaluate different types of turbine failures and 
check if it is possible to detect when a loss of turbine 
performance occurs. 
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