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Abstract. The importance and future prospects of offshore 
wind power generation invite great efforts and investments to 
make it an efficient technology. A crucial aspect is the 
development of efficient control strategies, which in many cases 
require models to identify the state of the turbine at a given time 
accurately. These models must be simple enough not to increase 
the computational complexity of the control algorithm while being 
able to capture the nonlinearity and coupling of wind systems. In 
this work we study the possibility of using neural networks to 
identify a wind turbine model to predict its power output. Two 
models, with different number of inputs, have been proposed. 
LSTM (Long-Short Term Memory) and RNN (Recurrent Neural 
Network) have been compared, with satisfactory results in terms 
of model accuracy on an offshore 5MW WT. 
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1. Introduction 
 
Offshore wind energy is experiencing an important growth 
with an increase of this kind of installation, up to 21% in 
2021 [1]. Most of these offshore wind turbines are built in 
shallow water with fixed foundations, while floating 
turbines present significant challenges due to their greater 
complexity [2]. This complexity requires the use of models 
and control algorithms able to capture all dynamic effects to 
design and operate optimally the turbines. Besides, these 
controllers must be computationally cost efficient to operate 
in real time [3]. The main objectives of wind turbine control 
are to maintain safe operation, maximize power generation, 
mitigate fatigue loads on the structure, and avoid fault 
conditions [2]. 
 
Commercial wind turbines typically operate at variable 
speed, and use different control strategies depending on the 

operating regime [3]. The use of classical control technics 
like PID (Proportional-Integral-Derivative) regulators 
based on a single input single output (SISO) scheme 
require multiple control loops to stabilize the structure. For 
more complex turbines, multiple-input multiple-output 
(MIMO) strategies that are able to capture the most critical 
dynamics are a must. It is in this context where the 
identification of the most important features of the turbine 
system is an important step, in order to design effective 
control strategies such as MPC (Model Predictive Control) 
or State Space based control. 
 
Some researchers have worked on this approach. In [4], a 
MPC based control strategy to stabilize the power 
generation and reduce the dynamic loads in the structure 
of the 5-MW floating turbine [5], in the constant speed 
operation regime, is proposed. An internal linear model, 
identified from the results of a highly complex non lineal 
model, is used to predict the system behavior and optimize 
the control signals. Another approach is to design a digital 
twin of a 1.5-MW turbine to monitor the state of the 
structure from the loads estimated with the twin [6]. The 
authors use a Kalman filter based linear model designed 
with operational data complemented by nonlinear 
simulations. This model allows estimating the state of the 
system at an instant of time with limited information about 
it. In a similar way, in [7] a monitoring system of a gear 
box based on data obtained from different wind farms is 
presented. Different machine learning (ML) and deep 
learning (DL) methods are used to design predictive 
models. The model based on deep neural networks 
performs the best. The use of neural networks to estimate 
turbine power generation is an interesting topic. In [8] an 
artificial neural network (ANN) is used to estimate the 
power generated by a five-turbines wind farm, and to 
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propose optimized angles to reduce the wake effect on the 
turbines. Long short term memory (LSTM) neural networks 
have been shown as an effective tool to predict the power 
generation of the turbines in a wind farm [9]. The training 
of the networks is done using historical wind data and 
turbine power generation. In [10] and [11], an effective 
wind speed estimator based on neural networks is 
successfully used to improve the performance of a classical 
controller. These types of networks have also been used in 
the design of controllers as substitutes of complex and 
computationally costly strategies [12]. In [13] a blade pitch 
controller for a 7-MW turbine based on neural networks and 
reinforcement learning is design, showcasing the potential 
of the neural network to both substitute other control 
strategies, and complement and improve their performance. 
 
In this paper, the use of recurring neural networks (RNN) to 
identify nonlinear systems is studied using simulated data 
of a 5-MW turbine [5]. Two models with different input 
signals are compared. In the first model, the power 
generated is estimated at t instant using several key signals, 
including the wind speed, in past instants. For the second 
model, the wind speed signal is ruled out. It is considered 
interesting to compare the performance of both models 
given that the simulated wind speed data coming from 
Openfast [14] is usually not available in the typical 
commercial wind turbine, or the sensor measurement may 
present uncertainties or faulty behaviour. Therefore, having 
a model that does not rely on this information is interesting. 
 
The paper is structured with a first section in which the 
turbine, the software, and the models used in the study are 
described. The data used to train the neural networks, as 
well as its structure, are also presented. Next, the tests 
performed to study the performance of the models and 
results comparison are presented and discussed. Lastly, the 
conclusions and possible future lines of study are set out. 
 
2. System and Models Description 
 
A. Wind Turbine Description 
 
The wind turbine used is described in [15]. It is an offshore 
5-MW wind turbine with a fixed pillar as support. Table I 
shows a summary of the key characteristics of the turbine. 
 

Table I – Wind Turbine Characteristics 
Rating 5 MW 
Rotor orientation, Configuration Upwind, 3 Blades 
Control Variable Speed, 

Collective Pitch 
Drivetrain High Speed, Multiple-

Stage Gearbox 
Rotor, Hub Diameter 126 m, 3 m 
Hub Height 90 m 
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 
Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 
Rated Tip Speed 80 m/s 
Overhang, Shaft Tilt, Precone 5 m, 5º, 2.5º 
Rotor Mass 110000 kg 
Nacelle Mass 240000 kg 
Tower Mass 347500 
Coordinate Location of Overall CM (-0.2 m, 0.0m, 64.0 m) 

 

This choice is particularly convenient since reliable 
simulation data for this turbine can be generated with 
Openfast software [14] in the validation tests, Test 19 in 
particular. Openfast is a software developed by NREL 
(National Renewable Energy Laboratory), formerly 
known as FAST (Fatigue, Aerodynamics, Structures, and 
Turbulence), used for wind turbine nonlinear simulation 
and multidisciplinary analysis. 
 
This study uses data generated by Openfast to train the 
neural networks. Data of the wind speed is generated using 
the Turbsim [15], with an average speed of 12 m/s. 
 
B. Neural Network Models Signals Description 
 
The objective of this work is to study the possibility of 
modeling the power generation in the wind turbine using 
neural networks. An analysis of the correlation between 
the Openfast output channels is carried out and the most 
representative signals for the case study are selected. 
 

Table II – Key Signals for the Networks 
SIGNAL OPENFAST 

CHANNEL 
INPUT/OUTPU 

(MODEL) 
Wind Speed x 
component 

Wind1VelX 
Input (1) 

Wind Speed y 
component 

Wind1VelY 
Input (1) 

Wind Speed z 
component 

Wind1VelZ 
Input (1) 

Blade Pitch BldPitch1 Input (1 and 2) 
Rotor Speed RotSpeed Input (1 and 2) 
Rotor Torque RotTorq Input (1 and 2) 
Generator Power GenPwr Output (1 and 2) 

 
The output of the networks is the ouput power. Model 1 
uses all the signals to train the networks, whereas in model 
2 the wind speed signals are ruled out. The data are 
generated with an Openfast simulation for 3000 s, with 
time increments of 50 ms. 
 
C. Neural Networks Description 
 
The networks used for both models are recurrent networks, 
using LSTM and simple units RNN, respectively. Fig. 1 
shows a typical LSTM unit, and Fig. 2 a simple RNN unit. 
 

 
Fig. 1 – LSTM Unit Scheme [16] 
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Being it the input gate, ct the memory gate, ft the forget gate, 
and ot the output gate. The gate gt is a complement to the 
input gate. 
 

 
Fig. 2 – Simple RNN Scheme [16] 

 
Where Whh, Why, y Wuh are the weight matrix, ut the input, yt 
the output, y ht the hidden state variable. 
 
The neural networks are generated with Tensorflow [17]. 
Both neural networks have the same macro structure. It has 
not been thoroughly optimized, but parameters that yield 
acceptable results from a set of values tested have been 
selected. The networks have three layers of 100 recurrent 
units and an output layer with 1 standard unit, with a ReLu 
activation function. After each recurrent layer, a dropout 
layer is included to avoid overfitting issues. Fig. 3 shows a 
summary of the LSTM based network, being the RNN 
network the same. 
 

 
Fig. 3 – Networks Macro Structure Summary 

 
The input data for the networks are the state vectors with the 
selected signals over the last second, i.e. 20 temporal 
increments of 50 ms each. Thus the input has 20 state 
vectors. The network output is the estimated generator 
power. 
 
D. System Identification 
 
To perform the system identification, the neural networks 
have to be trained. It is done using the Openfast generated 
data over 3000 s, with time increments of 50 ms. That is, 
there are 60,000 data points for each selected signal. A 60%, 
20%, 20% split is performed for training, validation, and 
test sets. Since it is a time series, this division is done in 
chronological order. 

 
1) Model 1 

 
The objective of the first model is to estimate the generator 
power at time t using an input state vector with the 
complete set of signals shown in Table II. The networks 
performance over the test data set is shown in Table III, 
Fig. 4 (LSTM) and Fig. 5 (RNN). The MAE (mean 
absolute error) and RMSE (root mean square error) are 
used as metrics. 
 

Table III – Model 1 Training Performance Summary 

NETWORK 
ERROR 

MAE RMSE 
[kW] [kW] 

LSTM 26.23 40.67 

RNN 30.76 50.14 

 

 
Fig. 4 – Training Results Model 1, LSTM Network  

 

 
Fig. 5 – Training Results Model 1, RNN Network 

 
As it is possible to see, both networks have a good 
performance on the training data. The LSTM networks 
presents smaller errors. 
 

2) Model 2 
 
The objective of the second model is to estimate the output 
power at time t using an input state vector with the set of 
signals shown in Table II, except the wind speed that has 
been ruled out. This may be a common scenario due to the 
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lack of real measurements, uncertainty, noise, or failures in 
the sensors. 
 

The networks performance over the test data set is shown in 
Table IV, Fig. 6 (LSTM) and Fig. 7 (RNN). 
 

Table IV – Model 2 Training Performance Summary 

NETWORK 
ERROR 

MAE RMSE 
[KW] [KW] 

LSTM 33.78 58.31 

RNN 57.94 77.73 

 

 
Fig. 6 – Training Results Model 2 LSTM Network  

 

 
Fig. 7 – Training Results Model 2 RNN Network 

 
Again, both networks have a good performance but in this 
case the errors are bigger. The LSTM networks gives better 
results, as in the previous case. 
 
3. Discussion of the Results 
 
This last section presents the results of the tests that have 
been carried out with the two models defined above. To 
compare the models performance with reliable data, the 
regression test data no. 19 of the Openfast software is used. 
The regression test has data for the signals used in this study 
for a period of 60 s, with time intervals of 50 ms. 
 

Moreover, the data used in this section are different from 
the training and testing data used during the validation of 
the networks. 

 
A. Model 1 Test 
 
The results of the model 1 test are summarized in Fig. 8 
and Table V. The results are consistent with the training 
results. Both networks types show good performance, 
being the LSTM slightly better. 
 

 
Fig. 8 – Model 1 Test Results 

 
Table V – Model 1 Results Summary 

NETWORK 
ERROR 

MAE RMSE 
[KW] [KW] 

LSTM 17.67 33.56 

RNN 34.02 53.36 

 
It is worth it to remark that the errors are even smaller than 
in training and validation, at least for the LSTM network. 
 
B. Model 2 Test 
 
The results of the model 2 test are summarized in Fig. 9 
and Table VI. The results again are consistent with the 
training results. 
 

 
Fig. 9 – Model 2 Test Results 
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Table VI – Model 2 Results Summary 

NETWORK 
ERROR 

MAE RMSE 
[KW] [KW] 

LSTM 38.21 62.21 

RNN 62.22 85.13 

 
Again results are good and errors are similar to the ones 
obtained during the training, but slightly bigger. 
 
The comparison between both models leads to interesting 
conclusions about the effect of the wind speed on the 
behaviour of the models. As it can be seen, both types of 
networks worsen the performance in the second case (model 
2), when the wind speed is not considered. In particular, the 
x component of the wind speed is the best correlating with 
the generator power. 
 
4. Conclusions and future works 
 
The suitability of recurrent neural networks to estimate the 
generator power of a wind turbine is studied. Two models 
with different input signals are trained and used to compare 
their performance. The second model, with fewer inputs 
given that the wind speed is not used, is worse than the first 
model. Still, it gives good results regarding the prediction 
of the output power. However, it is an interesting exercise 
given that the wind speed is a variable that might not be 
available or may be not reliable. Both models show good 
potential to be used, and in both cases the LSTM networks 
surpasses the RNN. 
 
Even though the results when an abrupt variation of the 
signal is not desirable, this performance can be improved 
optimizing the hyper-parameters of the networks or even 
implementing different mechanisms as a function of these 
changes [18]. The number of state vectors considered as 
input to the networks is possibly one of such parameters that 
might be sensitive to the mentioned behaviour. Moreover, it 
could be interesting to modify or increase the Openfast 
signals used as inputs to improve the predictions. Lastly, a 
future line of study could also be to design a similar model 
specifically tailored to use as part of a model predictive 
controller. 
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