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Abstract. Transformers in electric power systems are of great 

importance, with significant effects on the distribution of electric 

energy. The modeling of this machine, considering the various 

usable connections, requires a more detailed analysis for better 

results. Thus, the objective of this work is to propose a three-phase 

transformer model including the neutral in the admittance 

matrices, the ground impedance, taps settings and also the 

magnetizing branch. 
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1. Introduction 

 
Renewable energy sources have played an important 

role in solving the high energy consumption worldwide. In 

high-tech transmission systems requires more efficient 

transformers to reliably supply wind and solar energy. In 

electric power distribution systems, transformers are of 

fundamental importance, since they are responsible for the 

compatibility between the distribution voltage (medium 

voltage) and the supply voltage for the final customer (low 

voltage).  

Together with the electric conductors, transformers are 

the means to conduct the energy between the source and the 

final consumption, that is, they are in series with the load. 

This means that all current flows through them, and 

consequently, the higher the resistance, the greater the joule 

loss (RI2) due to its operation. 

According to a study carried out by the Electric Energy 

Research Center (CEPEL), the losses of such machines add 

up to a daily average cost of US$2,924,190.59, which 

corresponds to the order of 22,169.3 MWh of energy 

[1].Thus, the magnitude of these losses demonstrates that 

efficient transformers are an excellent decision for the 

conservation of precious energy sources and for the 

reduction of operational costs of the industry, while 

helping to preserve the environment.  

Therefore, although well-known, transformers are an 

excellent opportunity to study with a view to identifying 

possibilities of savings or even recommendations as to the 

best technology to be used by these equipment’s.  

In the new electrical systems projects and in the 

evaluation of the existing ones, digital simulation is an 

essential tool for the engineer's work. However, due to the 

practicality of modeling and the smallest computational 

effort, the large electrical systems, for the most part, still 

use single-phase modeling for their simulation. This 

condition disregards the different types of connections, the 

couplings and the possible unbalances between the phases.  

Current computer systems have processing and storage 

capabilities that enable three-phase simulation of large 

power systems. This property allows more precise studies 

to be carried out, but faces new obstacles, such as the 

difficulty of convergence of the algorithms, prepared for 

single-phase systems, and the adaptation of single-phase 

models to three-phase ones. 

Three-phase transformers are present in all electrical 

power systems and have several primary and secondary 

connection options, grounding forms and voltage control.  

In this context, the purpose of this paper is to present 

adaptations of the traditional two windings power 

transformer model, incorporating the neutral in the 

admittance matrices and considering the ground 

impedance, the possible taps and the magnetizing branch. 

In addition to the representation of these parameters, the 

study seeks to contribute to the achievement of more 

realistic models and contributing to more precise 

assessments of an electrical power system. 

 

2. Transformer Base Impedances 
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Because the transformer played a fundamental role in 

the electrical systems, it always demanded the need to a 

representation by an electric circuit that translated the 

behavior of the voltages and currents in its entrance and exit. 

Together with the frequency domain representation, Charles 

P. Steinmetz [2] presented the mathematical modeling of a 

single-phase transformer, as shown in Figure 1. The 

Steinmetz equivalent applies to both single-phase 

transformers and one phase of a three-phase transformer 

bank.  

 
R1 X1 R2' X2'

Rm Xm
V1

.
V2
.

Carga

 
Figure 1. Steinmetz Equivalent Circuit. 

 

The parameters of the Steinmetz circuit are obtained 

from the data of the transformer board and of two tests: no-

load and short-circuit [2]. 

The impedances of the primary side �̇�1 (𝑅1 + 𝑗𝑋1  ), of 

the secondary referred to the primary �̇�2 (𝑅2
′ + 𝑗𝑋2

′  ), of the 

magnetization branch �̇�𝑀(𝑅𝑚  //𝑗𝑋𝑚  ) and their consequent 

admittances �̇�1, �̇�2 e �̇�𝑀 constitute the basic parameters for 

the elaboration of the matrix between the primary busbar 

and the secondary busbar.  
The mathematical procedure for obtaining these 

parameters is presented in the following sequence, 

considering the system per-unit [pu], where reference 

values of voltage (𝑉𝐵), current (𝐼𝐵), power (𝑆𝐵) and 

impedance (𝑍𝐵) use the nominal (board) values of 

transformer. 

The short-circuit test, in the case of two-winding 

transformers, is performed by short-circuiting the terminals 

of one of the windings, preferably the lower voltage one, to 

facilitate reading the voltage and current on the high side, 

and applying voltage at the rated frequency on the other 

winding until the nominal current is short-circuited [2]. This 

procedure makes it possible to calculate the short-circuit 

impedance, which characterizes the impedance between 

primary and secondary, consisting of a resistance in series 

with an inductive reactance, which in turn, indicates the 

joule losses due to the nominal current flow through the 

windings and the losses by dispersion of the magnetic flux, 

respectively. In addition, it provides the percentage voltage 

drop caused by the equipment when it feeds full load. This 

test determines the value of the transformer's percentage 

impedance.  

In this test, the applied voltage is small compared to the 

rated voltage. In these circumstances, the current of the 

magnetizing branch is very small compared to that one 

which flows through the short circuit and, therefore, the 

magnetizing branch can be neglected. So, it is assumed that 

the equivalent electric circuit of Figure 2.  

Req Xeq

Rm Xm
Vcc

.
Icc

.

 
Figure 2. Equivalent Circuit of the Short-Circuit Testing. 

 

The equivalent electrical resistance Req and the 

equivalent inductive reactance Xeq correspond, 

respectively, to the sum of the resistances and dispersion 

reactances of the primary and secondary windings referred 

to the primary. The percent impedance of the transformer 

is given by Zeq, information contained on the transformer 

nameplate. 

𝑅𝑒𝑞 =
𝑃𝑐𝑐

𝐼𝑐𝑐
2 ∙ 𝑍𝐵

[𝑝𝑢] → 𝑅𝑒𝑞 =
𝑃𝑐𝑐

𝑆𝐵

 [𝑝𝑢] (1) 

𝑍𝑒𝑞 = 
𝑉𝑐𝑐

𝐼𝐵 . 𝑍𝐵

[𝑝𝑢]  =
𝑉𝑐𝑐
𝑉𝐵

 [𝑝𝑢]. (2) 

𝑋𝑒𝑞 = √𝑍𝑒𝑞
2 − 𝑅𝑒𝑞

2   [𝑝𝑢]. (3) 

Where: 
 

Pcc - Short-Circuit Power [W]. 

Icc - Short-Circuit Current [A]. 

Vcc - Short-Circuit Voltage [V]. 
 

The resistance Req should have its value corrected for 

the transformer operating temperature, since, most likely 

at the time of the test, the equipment is out of its operating 

temperature which affects the electrical resistance of the 

windings, because it varies with the temperature. The 

correction is foreseen in the technical norm NBR5380 / 

1993 [3], according (4). 

 

𝑅𝑒𝑞
′ = 𝑅𝑒𝑞 ∙

𝜃1+∝

𝜃2+∝
  (4) 

Being: 
 

Ɵ1 - Reference temperature [°C] 

Ɵ2 - Surrounding medium temperature [°C] 

∝ - Temperature coefficient (234.5 for copper 

and 224 for aluminum) 
 

The no-load test is performed by applying pure sine-

wave voltage of nominal rated value to the rated frequency 

of the equipment [2]. Voltage, current and power are 

measured, thus enabling the calculation of the magnetizing 

branch parameters, which represents the hysteresis and 

Foucault (parasitic currents) losses.  

Unlike the traditional transformer models, in this 

article, we chose to represent the transformer according to 

Figure 3. It is observed that the equivalent impedance, 

obtained by the short-circuit test is divided into two parts. 

These parts are identical in [pu]. This option results in 

more accurate studies of the magnetizing current impact 
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on the electrical power systems, as it does not neglect the 

voltage drop of the primary winding.  

 
Req/2 Xeq/2 Req/2 Xeq/2

Rm Xm
V1

.
V’2
.

 
Figure 3. Full Equivalent Circuit. 

To obtain the parallel branch, the voltage drop in the 

primary series impedance caused by the circulation of the 

no-load current is considered. This is one of the peculiarities 

of the modeling presented in this article.  

    �̇�0 = 𝑉𝑛 − ( 
𝑅𝑒𝑞

2
+ 𝑗

𝑅𝑋𝑒𝑞

2
) ∙ 𝐼0̇ [𝑉] (5) 

𝑅𝑚 =
�̇�0

2

𝑃0 −
𝑅𝑒𝑞 ∙ 𝐼0̇

2

2

 [𝑝𝑢]  (6) 

 

The no-load current along with the resulting power 

factor (𝑓𝑝𝑜), allows the magnetization reactance calculation 

(𝑋𝑚). 

 

𝐼0̇ = 𝐼0 ∙ 𝑐𝑜𝑠𝜙𝑜 + 𝑗 𝐼0 ∙ 𝑠𝑒𝑛𝜙𝑜 [𝐴] (7) 

𝑓𝑝𝑜 = 𝑐𝑜𝑠𝜙𝑜 =
𝑃0

𝑉𝑛 . 𝐼0
 (8) 

𝑋𝑚 =
𝑉0

𝐼𝑜. 𝑠𝑒𝑛𝜙𝑜 
 [Ω] =

𝐼0
𝐼𝑜. 𝑠𝑒𝑛𝜙𝑜 . 𝑍𝐵

[𝑝𝑢] (9) 

 

Thus, the equivalent admittances of the primary, 

secondary and magnetization are: 

 

 �̇�1 = �̇�2 =
2

𝑅𝑒𝑞+𝑗𝑋𝑒𝑞
 [𝑝𝑢]  (10) 

�̇�𝑚 =
𝑅𝑚 + 𝑗𝑋𝑚

𝑗(𝑅𝑚 + 𝑋𝑚) 
 [𝑝𝑢] (11) 

 

3. Three-phase Transformer Matrix 

 
The admittance matrix of the three-phase transformer, 

for each winding, is represented by (12). 

 

[�̇�abcn] =  

[
 
 
 
 
�̇�𝑎𝑎 �̇�𝑎𝑏 �̇�𝑎𝑐 �̇�𝑎𝑛

�̇�𝑏𝑎 �̇�𝑏𝑏 �̇�𝑏𝑐 �̇�𝑏𝑛

�̇�𝑐𝑎 �̇�𝑐𝑏 �̇�𝑐𝑐 �̇�𝑐𝑛

�̇�𝑛𝑎 �̇�𝑛𝑏 �̇�𝑛𝑐 �̇�𝑛𝑛]
 
 
 
 

 (12) 

 

The transfer matrix between the primary busbar (index 

1) and the secondary busbar (index 2) of a three-phase 

transformer with two windings ([�̇�12]) is constituted by four 

primary submatrices that correspond to the primary ([�̇�𝑝𝑝]), 

the secondary ([�̇�𝑠𝑠]), and the couplings between both 

([�̇�𝑝𝑠] 𝑎𝑛𝑑 [�̇�𝑠𝑝]). 

 

[�̇�12] =  [
[�̇�𝑝𝑝] [�̇�𝑝𝑠]

[�̇�𝑠𝑝] [�̇�𝑠𝑠]
] (13) 

To represent the magnetization branch in three-phase 

modeling, a dummy bar was chosen to be created between 

the primary and the secondary, similar to the single-phase 

modeling. However, in this case, a three-phase transformer 

(without the magnetization branch) is inserted between the 

primary and the dummy bar, the same occurs between the 

dummy bar and the secondary bar, as shown in Figure 4. 

The magnetizing branch is inserted in the form of load to 

the dummy bar.  

 
Figure 4. Three-phase transformer modeling. 

By using this methodology, the transfer matrix 

between the primary and secondary results in a matrix of 

order 12x12. This one will be formed from submatrices as 

shown by (14), where the index d indicates the dummy 

busbar. 

 

[�̇�12] =  [

[�̇�𝑝𝑝] [�̇�𝑝𝑑] [�̇�𝑝𝑠]

[�̇�𝑑𝑝] [�̇�𝑑𝑑] [�̇�𝑑𝑠]

− [�̇�𝑠𝑑] [�̇�𝑠𝑠]

] (14) 

 

It should be noted that the connection of the secondary 

of the transformer between the primary and the dummy bar 

will always be grounded star. The same occurs for the 

primary connection of the transformer between the 

dummy bar and the secondary bar. 

The magnetization branch is modeled in the form of a 

load, also, connected in a grounded star. Thus, the dummy 

busbar always has a connection to the reference (ground). 

This option aims to minimize convergence problems in 

load flow algorithms when in the presence of ungrounded 

connections, such as Delta and isolated star connections. 

Therefore, the submatrices [�̇�𝑑𝑝], [�̇�𝑝𝑑], [�̇�𝑑𝑠]𝑒 [�̇�𝑠𝑑] 

represent the transformers connected between the primary-

dummy and dummy-secondary bars, and depend on the 

connection adopted in the respective windings. The 

magnetization branch is modeled by the submatrix  [�̇�𝑑𝑑] , 

according to (15). 

 

[�̇�𝑑𝑑] =  

[
 
 
 
 

�̇�𝑚 − − −�̇�𝑚

− �̇�𝑚 − −�̇�𝑚

− − �̇�𝑚 −�̇�𝑚

−�̇�𝑚 −�̇�𝑚 −�̇�𝑚 3�̇�𝑚 ]
 
 
 
 

 (15) 
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To insert the primary and secondary transformer into the 

([�̇�12]), will depend on the type of connection. Excluding 

the zigzag connection, four submatrices are sufficient to 

represent the other primary and secondary connections.  

The sub-matrices should be corrected according to the 

voltage changes due to the type of connection. The 

following table translates these changes. 

 
Table 1 – Connections Types 

Connection [𝑌𝑃𝑃] [𝑌𝑆𝑆] [𝑌𝑃𝑆],[𝑌𝑆𝑃] 
YT – YT [𝑌𝐼] [𝑌𝐼] −[𝑌𝐼] 
YT - Y [𝑌𝐼] [𝑌𝐼] −[𝑌𝐼] 
YT - D [𝑌𝐼] [𝑌𝐼𝐼] [𝑌𝐼𝐼𝐼]/√3 

YT - Z [𝑌𝐼] [𝑌𝐼𝑉] −[𝑌𝐼] 
Y – Y [𝑌𝐼] [𝑌𝐼] −[𝑌𝐼] 
Y – YT [𝑌𝐼] [𝑌𝐼] −[𝑌𝐼] 
Y - D [𝑌𝐼𝐼]/3 [𝑌𝐼𝐼] [𝑌𝐼𝐼𝐼]/√3 

Y - Z [𝑌𝐼] [𝑌𝐼𝑉] −[𝑌𝐼] 
D – D [𝑌𝐼𝐼]/3 [𝑌𝐼𝐼]/3 −[𝑌𝐼𝐼]/3 

D - YT [𝑌𝐼𝐼]/3 [𝑌𝐼] [𝑌𝐼] 
D – Y [𝑌𝐼𝐼]/3 [𝑌𝐼] [𝑌𝐼]/√3 

D - Z [𝑌𝐼𝐼]/3 [𝑌𝐼𝑉] −[𝑌𝐼] 
Z - YT [𝑌𝐼𝑉] [𝑌𝐼] −[𝑌𝐼] 
Z – Y [𝑌𝐼𝑉] [𝑌𝐼] −[𝑌𝐼] 
Z - D [𝑌𝐼𝑉] [𝑌𝐼𝐼]/3 −[𝑌𝐼] 

 

The submatrices for the correction of voltages are 

presented in the following equations: 

 

[YI]= [

1 0 0 -1

0 1 0 -1

0 0 1 -1

-1 -1 -1 3

] (16) 

 

[YII]= [

2 -1 -1 0

-1 2 -1 0

-1 -1 2 0

0 0 0 0

] (17) 

[YIII]= [

-1 1 0 0

0 -1 1 0

1 0 -1 0

0 0 0 0

] (18) 

 

[YIV]= [

1 -1 -1 -1

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 3

] (19) 

 

As an example, matrix formation will be demonstrated 

[�̇�12] of the transformer with the D-YT connection.  

 

[�̇�12] =  

[
 
 
 
 
 
[�̇�𝐼𝐼]

√3

[�̇�𝐼𝐼𝐼]

√3
   [�̇�𝐼]

[�̇�𝐼𝐼𝐼]

√3
[�̇�𝑑𝑑] −[�̇�𝐼]

− −[�̇�𝐼]     [�̇�𝐼]]
 
 
 
 
 

 (20) 

 

The submatrix [�̇�𝑑𝑑] represents where the magnetization 

branch will be inserted and the junction between the 

secondary of the first transformer and the primary of the 

second transformer, which is the dummy bar. 

 

- Zigzag Connection 

In the Zigzag type connection, the admittance matrix 

undergoes some changes, in which an algorithm is 

performed to make changes to this connection.  

The terms K1 and K2 are used to correct the parameters 

in the matrix [�̇�12
′ ].  

 

𝐾1 = 
− sin 𝛼

sin −120º
 (21) 

𝐾2 =
(cos𝛼 − sin 𝛼)

tan −120 º
 (22) 

Being α the angle of the parameter. 

The matrix [�̇�12
′ ] is multiplied by a new matrix that 

corrects the parameters according to the angles, shown 

below: 

 

[
 
 
 
 
 
 
 

- - - - k1 k2 - -
- - - - - k1 k2 -
- - - - k2 - k1 -
- - - - - - - -

k1 - k2 - (k12+k2²) (k1.k2) (k1.k2) -

k2 k1 - - (k1.k2) (k12+k22) (k1.k2) -

- k2 k1 - (k1.k2) (k1.k2) (k12+k22) -
- - - - - - - -]

 
 
 
 
 
 
 

 (23) 

 

A. Kron Reduction   

 

Since the dummy busbar does not bring relevant 

information to the electrical power systems studies, from 

the computational point of view it is better that the 

resulting matrix be reduced to one of order [8,8], 

representing the equation between primary and secondary. 

This work is carried out by the so-called Kron Reduction 

[4]. This mathematical tool allows to "eliminate" bars or 

passive nodes, that is, those that are connected to loads 

represented by impedance and that are not directly 

interconnected to the generating sources [9]. The reduction 

is generally effected from the following (20). 

 

𝑌′𝑖𝑗 =  𝑌𝑖𝑗 − 
𝑌𝑖𝑘 − 𝑌𝑘𝑗

𝑌𝑘𝑘
 (24) 

Where: 

  i = 1,2,...,k-1,k+1,...n,   e j = 1,2,...,k-1,k+1,...n. 

 

After the Kron reduction, the admittance matrix is 

summarized in the matrix Y '. 

 

[𝑌′̇ 12] =  [
[𝑌′̇ 𝑝𝑝] [𝑌′̇ 𝑝𝑠]

[𝑌′̇ 𝑠𝑝] [𝑌′̇ 𝑠𝑠]
] (25) 

B. Transformers with grounded neutral 

For transformers with the grounded primary, the 

ground admittance is added in the submatrix 𝑌′̇ 𝑝𝑝, while 

for ground impedance in the secondary, it is added to the 

submatrix 𝑌′̇ 𝑠𝑠 . 

C. Transformers with TAP 

- Transformers with fixed TAP 

For transformers with fixed TAP in the primary side 

the matrix [Y '] goes through the following operation: 
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[𝑌′̇ 12] =  

[
 
 
 
 
[�̇�𝑝𝑝

′ ]

𝑇𝑎𝑝2

[�̇�𝑝𝑠
′ ]

𝑇𝑎𝑝

[�̇�𝑠𝑝
′ ]

𝑇𝑎𝑝
[�̇�𝑠𝑠

′ ]
]
 
 
 
 

 (26) 

 

For transformers with fixed TAP in the secondary, the 

matrix [Y '] goes through the following operation: 

[𝑌′̇ 12] =  

[
 
 
 
 [𝑌′̇ 𝑝𝑝]

[𝑌′̇ 𝑝𝑠]

𝑇𝑎𝑝

[𝑌′̇ 𝑠𝑝]

𝑇𝑎𝑝

[𝑌′̇ 𝑠𝑠]

𝑇𝑎𝑝2 ]
 
 
 
 

 (27) 

 

- Three-phase transformers with automatic TAP 

For each interaction of the load flow the tap can be 

changed according to the voltage to be controlled. Thus, if 

the desired voltage is not within predetermined limits, the 

tap is increased by reducing the value according to the value 

and amount of taps available.  

 

4. Validation of the Model 
 

For the validation of the model, tests were performed in 

no-load and short circuit. The parameters used were: S = 

100 kVA, P0 = 0.5%, I0 = 1%, Pcc = 1% and Z% = 3.  

In the short-circuit test, in view of the percent 

impedance of 3% of the nominal primary and secondary 

voltage, an infinite load was placed (very large load 

compared to the rated load of the transformer) to simulate a 

short circuit. Load power 10 MVA and power factor 0.85, 

with constant impedance.  

 

Table 2 – No-load Test Result of the Different Connections  

Connection Expected Simulated Angular Lag 

Yt - Yt P = 0,5 kW P = 0,5 kW 0° 

Yt - D P = 0,5 kW P = 0,5 kW 30,01º 

Yt - Y P = 0,5 kW P = 0,5 kW 0,01° 

D - Yt P = 0,5 kW P = 0,5 kW -29,99° 

D - Y P = 0,5 kW P = 0,5 kW -29,99° 

D - D P = 0,5 kW P = 0,5 kW -29,99° 

Y - Yt P = 0,5 kW P = 0,5 kW 0,01° 

Y - Y P = 0,5 kW P = 0,5 kW 0,01° 

Y - D P = 0,5 kW P = 0,5 kW 30,01° 

Yt - Z (10º) 

Yt - Z (15º) 

Yt - Z (20º) 

P = 0,5 kW  

P = 0,5 kW  

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

10,01° 

15,01° 

20,01° 

Y - Z (10º)  

Y - Z (15º)  

Y - Z (20º) 

P = 0,5 kW  

P = 0,5 kW  

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

10,01° 

15,01° 

20,01° 

D - Z (10°) 

D - Z (15°) 

D - Z (20°) 

P = 0,5 kW  

P = 0,5 kW  

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

-19,99° 

-14,99° 

-9,99° 

Z (10°) - Yt 

Z (15°) - Yt 

Z (20°) - Yt 

P = 0,5 kW  

P = 0,5 kW  

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

-9,99° 

-14,99° 

-19,99° 

Z (10°) - Y  

Z (15°) - Y  

Z (20°) - Y 

P = 0,5 kW  

P = 0,5 kW  

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

-9,99° 

-14,99° 

-19,99° 

Z (10°) - D  

Z (15°) - D  

Z (20°) - D 

P = 0,5 kW  

P = 0,5 kW  

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

P = 0,5 kW 

20,01° 

15,01° 

10,01° 

 

For the zigzag connection tests were performed at three 

different angles 10º, 15º and 20º. As can be seen from 

Table 2, there was no error in the no-load assay on the 

different types of connections. The expected value was the 

same as the simulated, thus validating the model.  

In Table 2 it is also possible to note the angular lag in 

the three-phase electrical voltages according to each type 

of connection.  

In Table 3, it is possible to notice that as in the No-load 

test did not present errors, the expected value was the same 

as the simulated one. The model that presents the neutral 

and the branch of magnetization can be validated. 

 

Table 3 – Short-Circuit Test Result of the Different 

Connections 

Connection Expected Simulated 

Yt - Yt P = 3,0 kW P = 3,0 kW 

Yt - D P = 3,0 kW P = 3,0 kW 

Yt - Y P = 3,0 kW P = 3,0 kW 

D - Yt P = 3,0 kW P = 3,0 kW 

D - Y P = 3,0 kW P = 3,0 kW 

D - D P = 3,0 kW P = 3,0 kW 

Y - Yt P = 3,0 kW P = 3,0 kW 

Y - Y P = 3,0 kW P = 3,0 kW 

Y - D P = 3,0 kW P = 3,0 kW 

Yt - Z (10º) 

Yt - Z (15º) 

Yt - Z (20º) 

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

Y - Z (10º) 

Y - Z (15º) 

Y - Z (20º) 

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

D - Z (10°) 

D - Z (15°) 

D - Z (20°) 

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

Z (10°) - Yt 

Z (15°) - Yt 

Z (20°) - Yt 

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

Z (10°) - Y 

Z (15°) - Y 

Z (20°) - Y 

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

Z (10°) - D 

Z (15°) - D 

Z (20°) - D 

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

P = 3,0 kW 

P = 3,0 kW 

P = 3,0 kW  

 

- Fixed TAP 

In order to carry out the test, simulated the system 

corresponding to Figure 5 that has: a voltage source, two 

bars (bar 1 of 13.8 kV and bar 2 of 0.380 kV), a 

transformer with S=112.5 kVA, and a load with S = 112.5 

kVA and power factor of 0.85. 

 
Figure 5. System for simulation with different TAPs 
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The first simulation was performed without change in 

the TAP, it was observed that the voltage in the secondary 

side dropped from 0.380 kV to 0.350 kV due to the presence 

of the load. 

For the Fixed TAP test in the primary a percentage of 

TAP 90% was placed, it was possible to observe in Table 4 

that the voltage returned to 0,380 kV. The same procedure 

was performed for Fixed TAP in the secondary with a 

percentage of 110%, obtaining the same result. Thus, it can 

be concluded that the transformer with Fixed TAP was 

validated. 

 

Table 4 - Test Results with different TAPs 
Sem TAP TAP Primário TAP Secundário 

0,35 kV 0,38 kV 0,38 kV 

 

- Automatic TAP 

For the Automatic TAP test, the same system of Figure 

6 was used with the same parameters. 

Without the automatic TAP the voltage in busbar 2 was 

from 0.380 KV to 0.350 KV becoming unfeasible. When it 

was added, it took 3 TAPs with a 2% step to raise the 

voltage to 0.370. Thus, it can be concluded that the 

transformer with Automatic TAP has been validated. 

 

5. Conclusion 

 
 

In this article was proposed a new methodology to 

model three-phase transformers, in which the magnetizing 

and neutral branches are included for the different types of 

connections. This type of method was performed to 

represent more realistically the electrical system, unlike the 

other studies that are found in the literature.  

The results obtained through the simulations observed 

the efficiency of the proposed method. The different types 

of connections converged and there was no increase in 

computational time of solution. 

For future work, convergence in an 18-bar system and 

the number of interactions required will be studied. In 

addition, the computational time of the different methods 

will be compared. 
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