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Abstract. This work presents a simple damage detection strategy
for wind turbine blades. In particular, a vibration analysis-based
damage detection methodology is proposed that requires only
healthy data and detects damage in different locations of the blade.
The stated structural health monitoring strategy is based on the
extraction of characteristics using statistical metrics as a technique
for the recognition and differentiation of healthy test experiments
from damaged test experiments with simulated faults created by
added mass. In this manner, several metrics are approached to find
those that show better classification in processing the data provided
by the sensors. Finally, an evaluation process is performed to detect
blade damage. The results show that the proposed RMSE metric
performs at an ideal level, making it a promising strategy for the
detection of blade damage.
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1. Introduction
In the world, 82% percent of energy consumption comes

from fossil fuels [1]. However, according to the BP company,
there has been a 1% decrease in the use of fossil fuels in the
last year [1]. Renewable primary energy (not including hydro
energy) had in 2021 a growth rate of 15% [1]. This rapid
growth indicates a trend towards alternative energy sources.
One of the most prominent is wind power, which has grown
rapidly since 2000 driven by supportive policies and falling
costs [2]. Since the wind is free and abundant and will not
depreciate over time if used continuously, it is a promising
alternative [3]. Wind power works by basically turning the
kinetic energy carried out by the wind into electricity by
induction in the generator.

As a renewable energy that is emerging as an alternative
to fossil fuels, there are some barriers to wind energy [4].
Some of the most optimal places to locate a wind turbine
(WT) are extremely remote, making operation and mainte-
nance costs high [3]. In addition, some offshore wind farms
are expanding their market share. Due to the challenging
environment in the area, the installation, and maintenance of
offshore wind farms is difficult.

Rough conditions and prolonged operation of WTs can
cause some blade damage that can include cracks and
coatings of a foreign material (ice or dirt), delaminating, and
damage to the structure [5]. These failures can lead to poor
blade performance and, therefore, poor power generation [5].
The possible causes of damage can be classified into the
following groups: fatigue, lightning strike, ice, erosion at
the leading edge [5]. Typically, each region of the blade is
vulnerable to a different failure mechanism. For example,
the tip of the blade is constantly affected by raindrops, hail,
and other impacts [6]. The most common ways to analyze
failure mechanisms are postmortem blade analysis, full-scale
testing, incident report analysis, direct monitoring of WTs in
operation, and computational modeling of a blade during a
stress test [6].

Structural health monitoring (SHM) is non-destructive and
is considered highly effective [6]. This process of damage
detection implies monitoring a structure over time, extracting
features that led to damage, and finally performing statisti-
cal analysis to determine the current state and a possible
prediction of the state [7]. For example, in 2020 Vidal et
al. a methodology for the diagnosis of structural damage
in jacket-type foundations is stated based on the criterion
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Fig. 1: Design of the blade clamping part in CAD software.

that any damage or structural change produces variations
in the vibrational response of the structure [8]. In [9], a
5-MW wind turbine modeled using the NREL FAST code
is used to perform a feasibility study to detect structural
faults in the blade by analyzing the vibration of the tower.
A work that proposes two in-cascade Siamese convolutional
neural networks to discern whether the structure is healthy
or damaged and, in case damage is detected, to determine
the diagnosis of damage (classifies the type of damage) is
presented in [10]. Finally, [11] presents an adaptive wavelet
packet denoising algorithm applicable to numerous SHM
technologies including acoustics, vibrations, and acoustic
emission.

In this work, non-destructive damage analysis is practiced
using vibration analysis and placement of accelerometers
specifically for damage detection on WT Enair E30PRO
blades. Structural health monitoring on the blade is applied
by feature extraction using statistical metrics as a technique
for recognition and differentiation of healthy test experiments
from damaged test experiments with simulated fault by added
mass. In this manner, several metrics are approached to find
those that show better classification and noise avoidance in
processing the data provided by the sensors. This leads to
exploring the root mean squared error more deeply as the
strongest proposal to obtain the distance to the threshold,
called the baseline. Preprocessing with the median metric is
taken into consideration because, when numerical distribu-
tions are skewed, the median is typically used to return the
center tendency.

The following describes the structure of this work. The
experiment configuration on the blade is defined in Section
2. Section 3 contains the proposed methods for detecting
blade damage. The results are reported in Section 4. Lastly,
the main conclusions are provided in Section 5, as well as
future research directions.

2. Experimental setup
The experiment can be conducted using different con-

figurations, such as those described in the works [12] and
[13]. To support the blade, one proposed method involves
screwing its base horizontally to suspend its weight in the
air. However, this type of fixation may result in some mass
loss due to the pins, and would require consideration of their
impact on the vibrations. Alternatively, a vertical fixation can

be used, where the weight of the blade rests on its base,
offering different fixation options. Hence, it is decided to
position the blade vertically on top of a welded plate on a
850x850x150 mm table. To support the blade, a specially
designed support was built using 3D printing as the chosen
manufacturing method for the support parts.

Several iterations are made to the design of the support. In
particular, in the final improved design, sleeves were included
in the support to adjust pressure as a grip, and the presence of
a chamfer was defined to reinforce the fastening. Because of
the small amount of excitation generated in the experiments,
the use of polylactic acid (PLA) as a construction material
for the support is sufficient. Figure 1 shows the design of
the manufactured support.

Seven triaxial sensors (x, y, and z axes) are placed in a
zigzag configuration along the blade, trying to measure accel-
erations in the most important areas produced by a miniature
impact hammer type 8204 with a voltage sensitivity of 2.7.
In Figure 2 is possible to see the blade vertically placed with
the different sensors located in a zigzag configuration along
it.

Finally, this work seeks to detect damage to the WT blade.
To simulate it, a bolt with nuts is used to concentrate an
added mass in three different places on the blade, as can be
seen in Figure 3.

3. Methodology
The stages of the suggested methodology are listed below.

First, raw data is collected from the sensors. Second, the
reshaping of the data is done to ensure that each new sample
contains enough data. Finally, an evaluation of a metric that
allows the detection of blade damage is carried out. The
following subsections comprehensively describe the different
stages mentioned above.

A. Data acquisition

The duration of each experiment is 2 minutes, with a
sampling frequency of 1651.6 Hz. As a consequence, each
of the 21 sensors (seven triaxial sensors) produces 198,194
readings. A medium-force blow from an impact hammer is
applied with consistency at 10-second intervals. Six exper-
iments were carried out for each different position of the
mass (see Figure 3) that simulate damage, in addition to six
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Fig. 2: Experiment configuration with sensors located in a
zigzag configuration along the blade.

Fig. 3: Mass positions in the WT blade.

experiments without mass accumulation that simulate a blade
in a healthy state.

The different experiments carried out are classified into
two categories, depending on their use throughout the dam-
age detection methodology. The first category is the baseline-
type experiments, which is made up only of healthy exper-
iments that will serve as a reference. The second category
is the test experiments that are compared with respect to the
baseline experiments, and thus test if the methodology works
and is capable of helping us to classify properly when the
data come from a healthy or damaged blade. Table I presents
the number of experiments for each category.

Table II shows the data obtained from each experiment.
The number of timestamps (198,194) determines the number
of rows, and the number of columns reflects the number of
sensors.

Table I. Classification of experiments.

State Quantity

Baseline Healthy 4

Test

Healthy 2

Damage 1 6

Damage 2 6

Damage 3 6

B. Data Reshape

To ensure that each sample that is processed has enough
information from each sensor for posterior metrics evalua-
tion, in this section, a feature engineering approach (data
reshaping) is used. In this study, new samples are created that
contain information from 8 seconds of data from the moment
the hammer blow is generated. Since hammer blows are ap-
plied every ten seconds (as noted above), the remaining two
seconds are removed. This is done to analyze the information
from the impact to the subsequent vibration behavior that
exists in the blade, without capturing information from the
samples generated by the next blow of the hammer (since this
process was carried out manually). Recall that the sampling
rate is 1651.6 Hz. Therefore, the first 13,214 values in each
column (approximately eight seconds of data) are modified
by relocating them to columns in the same row. Then, the
next 3,303 values (representing two seconds of information)
are removed. Finally, the same process is repeated every 10
seconds after each hammer stroke, as can be seen in Figure 4.
Table III shows the matrix scheme after the reshape process.

Fig. 4: Relocation of eight seconds of sample.
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Table II. Data matrix scheme.

0 1 2 3 4 5 6 7 . . . 20

A1 B1 C1 D1 E1 F1 G1 H1 . . . U1
A2 B2 C2 D2 E2 F2 G2 H2 . . . U2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A198193 B198193 C198193 D198193 E198193 F198193 G198193 H198193 . . . U198193
A198194 B198194 C198194 D198194 E198194 F198194 G198194 H198194 . . . U198194

Table III. Reshaped data matrix scheme.

0 1 . . . 20

A1 A2 . . . A13214 B1 B2 . . . B13214 . . . U1 U2 . . . U13214
A16518 A16519 . . . A29731 B16518 B16519 . . . B29731 . . . U16518 U16519 . . . U29731

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A165161 A165162 . . . A178374 B165161 B165162 . . . B178374 . . . U165161 U165162 . . . U178374
A181678 A181679 . . . A194891 B181678 B181679 . . . B194891 . . . U181678 U181679 . . . U194891

C. Metrics evaluation

Finally, a metric evaluation process is carried out to detect
damage to the blade studied. This process has two stages, as
indicated below.

1) Baseline metric evaluation: First, the four baseline
experiments are concatenated. Then, the median of each
eight-second sample is calculated for each sensor. That is,
a median will be obtained for sensor 0, another for sensor 1,
and so on up to sensor 20, as can be seen in the Table IV.
Then, a reference healthy median is defined by averaging of
the medians for each sensor, obtaining a single vector of 21
values (one for each sensor). This vector is called healthy
reference vector.

Table IV. Median calculation baseline.

0 1 . . . 20

Ā1 B̄1 . . . Ū1

Ā2 B̄2 . . . Ū2

. . . . . . . . . . . .
Ā11 B̄11 . . . Ū11

Ā12 B̄12 . . . Ū12

2) Test experiments: In this stage, the test experiments are
not concatenated, as it is desired to evaluate each experiment
separately to detect whether each of its 8-second samples
belongs to a damage-causing experiment or is in a healthy
state. For this reason, for each sensor in each experiment,
the medians of their samples are calculated (as was done
in the baseline experiments), obtaining 21 values for each
sample. This vector is called the test vector. Then, the root
mean squared error (RMSE) between each test vector sample
and the healthy reference vector is measured. The RMSE
Equation is the following.

RMSE =

√√√√ 1

N

N∑
i=1

(γ̂i − γi)
2
, (1)

where, γ̂ is the test vector sample values, γ is the healthy
reference vector values, i is the sensor number (0 ≤ i ≤ 20),
and the parameter N is equal to the total number of sensors.

If the RMSE is small, it means that the sample of the
test experiments has information that is quite similar to that
of the baseline experiments, so the sample is classified as
healthy. Otherwise, if the RMSE has a high value, it means
that the sample is from a case of blade damage.

4. Results
This section presents a discussion of the results obtained

by the proposed methodology.
Figure 5 shows the calculated RMSE between the healthy

reference vector and each of the eight-second samples from
the test experiments (for each type of damage). As can
be seen, healthy samples have a much smaller error than
samples with different damage, reaching a maximum value
approximately equal to 0.5. However, the errors for the
samples of the different damage reach values greater than 3.
This means that this methodology, in a simple way, allows
the detection of incipient damage in some part of the blade.
This gives wind farm operators time to go check the blade
to plan any maintenance.

5. Conclusions and future works
In this work, a simple damage detection strategy is pro-

posed and tested, without much computational cost, at differ-
ent locations of a WT blade. In particular, a damage detection
methodology is deployed that requires only healthy data. The
conceived damage detection methodology performed at an
ideal level, achieving 100% accuracy. The results show that
the proposed RMSE metric is promising as a simple SHM
strategy to detect early blade damage at different locations.

In summary, the advantages of the proposed damage
detection methodology that should be highlighted are the
following.

• There is no need for historical faulty data.
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Fig. 5: Graph of RMSE metric applied per case.

• It is based only on the output vibration data gathered by
the accelerometer sensors (the excitation given by the
wind is assumed to be unknown). Thus, it is a vibration-
response-only methodology.

• The performance indicators show a result of 100%.
However, the main disadvantage, which will be faced as

an immediate future work, is that it is necessary to validate
the proposed strategy in a more realistic environment that
takes into account various environmental and operational
conditions.

Finally, other techniques related to data analysis such as
neural networks should be studied, as they have interesting
properties that initially make them appropriate for the prob-
lem under consideration.
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