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Abstract. A Markov chain (MC) model is a statistical method 

of predicting future outcomes using past experience. This study 

proposes a hybrid method that uses a long short-term memory 

(LSTM) and a MC method to produce very accurate short-term 

(10-min) forecasts for the power output from a wind turbine (WT). 

The proposed method has three stages. The first stage uses k-

means clustering to partition the wind power data into several 

clusters. The second stage uses LSTM models to initially predict 

the wind power output for each cluster. The final stage uses a MC 

method to construct the transition probability matrix for every 10-

mimute time period. Using the transition probability matrices, the 

final predicted value for the WT power output is estimated using 

the prediction results for each cluster in the LSTM. This article 

also suggests a wind speed correction approach to enhance the 

forecasted wind speed result achieved by applying the weather 

research and forecasting model in order to generate more accurate 

wind power forecasting results. The proposed method is tested 

using a 3.6 MW WT power generation system that is located in 

Changhua, Taiwan. The effectiveness of the proposed model is 

compared with support vector regression (SVR), random forest 

(RF), LSTM and bidirectional gated recurrent unit (Bi-GRU) 

methods.  
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1. Introduction 
     Wind power is a vital part of the global electricity supply 

because it features low environmental emissions and low 

power generation costs. The limited predictability of 

intermittent wind power generation means that system 

operation and market trading are dependent on the quality 

of wind power forecasting (WPF) [1]. Predictions of wind 

power are critical to the reliable and cost-effective 

operation of wind power systems, especially for a smart 

grid with distributed and highly linked generation.  

     For the planning of a renewable energy power 

generation and usage, especially in grid systems, accurate 

short-term wind speed forecasts are essential. In 

meteorology, it is common practice to use post-processing 

techniques based on outputs from weather prediction 

models and local data to enhance forecasts [2]. 

     Wind power forecasting models are classified as 

persistent, physical, statistical, artificial intelligence/ 

machine learning (AI/ML) or hybrid models [3]. The 

persistence model treats the wind power for the immediate 

future the same as the current wind power. Physical 

modelling methods create mathematical models to 

determine the meteorological evolution of wind speed and 

then make wind power forecasts using the physical link 

between wind power conversion and meteorological 

conditions [4]-[5]. Probabilistic forecasting techniques [6]-

[8] derive the probability distribution for wind power at the 

prediction stage and this is used to determine the risk for 

power system, dynamic dispatch, and unit commitment. 

This method involves quick processing and high precision 

qualities so the MC model [9]-[10] is extensively used for 

short-term and very short-term wind speed (or wind power) 

probabilistic forecasting among the probabilistic 

forecasting approaches. 

      MC prediction [11]-[12] forecasts the occurrence rate 

for future events based on the current stage using transfer 

probability, which shows the degree of the effect of many 

types of random factors. It is used for stochastically volatile 

prediction problems, particularly in the context of wind 

power. The MC method is used to predict wind power 

points and a weighted MC [13] improves data mining of the 

initial data to increase accuracy. 

     The focus of this study is using a MC model for very 

short-term wind power forecasting. The MC method is used 

with a LSTM in a hybrid model. To verify the performance 

of the proposed hybrid method, the SVR, RF, LSTM and 

Bi-GRU models are used. All models use previous point 

power outputs from a wind power plant, and correct wind 

speed and wind direction from weather research and 

forecasting model with a 10-minute resolution. The wind 

power prediction models are compared using performance 

measures, such as mean relative error (MRE), root mean 

square error (RMSE) and normalized root mean square 
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error (NRMSE). The accuracy of a prediction model is 

determined by comparing the predicted and actual wind 

power outputs. 

     This paper is organized as follows. Section II gives an 

overview of the theory of clustering algorithms and single 

prediction models is given. The proposed method is 

described in Section III. Section IV presents the simulation 

results of wind speed correction and wind power 

forecasting for the single models and the proposed hybrid 

method. Conclusions are given in Section V. 

 

2. Clustering and Single Prediction Models 

 

A. The Unsupervised K-means Clustering Algorithm  

     One of the most basic and commonly used unsupervised 

machine learning techniques is k-means clustering. The k-

means algorithm [14] is a clustering technique that uses 

Euclidean distance as the measurement index of similarity: 

the smaller the distance between the two samples, the 

greater is the similarity. The square error criterion function 

is stable at the minimum. The Euclidean distance and 

square error criterion function are defined as: 
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where k is the number of clusters, ni is the number of 
samples in class J and mj is the average value for the 
samples in class J. The k-means technique for data mining 
uses the first group of randomly picked centroids as the 
starting points for each cluster and then performs iterative 
(repetitive) computations to optimize the position of the 
centroids.  

 

B. Random Forest 

     A machine-learning method called random forest is 

applied to classification and regression issues. An 

assortment of decision trees makes up a random forest. The 

bulk of the trees used for classification problems select the 

random forest output as their class, however the mean or 

average forecast for each individual tree is used for 

regression problems.  

     Bootstrap aggregation, commonly known as the 

ensemble technique of bagging, is used by random forest. 

Rows are picked to build each model using the bootstrap 

samples from the original data since bagging randomly 

selects a sample from the original dataset. Row sampling 

with replacement employs the bootstrap technique. Each 

individually trained model is used to produce the findings.    

When all the models are integrated, a majority vote or mean 

decision is reached. Aggregation is the process of merging 

all of the outputs to produce output. The RF model is less 

sensitive to noise and resilient to missing values and 

outliers. A thorough model of RF is presented in [15]. 
 

C. The Ensemble Learners  

      The forecasting outcomes of five different RF for wind 

speed correction are combined in this study using the linear 

regression (LR) and SVR models. A support vector 

machine (SVM) uses a maximum margin hyperplane to 

divide data points into two classes. This hyperplane is at the 

greatest distance between the nearest data points from two 

different classes, as shown in Figure 1. The support vectors 

are the data points on the margin. An SVM is used for 

classification and regression problems. Support vector 

regression (SVR) [16] constructs a dependency between 

the input and output of a system using a collection of 

training samples. The relationship is then used to anticipate 

the system output using the input. 

 

 
Fig. 1 Schematic diagram of the SVR model. 

      

The two dashed lines represent the limits, which are a 

distance ε away from the reference data, where ε is a user-

defined value. To develop the model, SVR only uses values 

outside the dotted lines. Training the SVR involves solving 

the following problems: 
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where w represents the learned weight vector, xi represents 

the i-th training instance, yi is the training label and  

𝜻𝒊 represents the gap between the boundaries and projected 

values beyond the bounds. C is a constraint that governs the 

penalty that is applied to observations that occur outside the 

boundaries. 

 

D. Long Short-Term Memory (LSTM)  

     The LSTM recurrent neural network has a self-loop 

network structure to memorize the previous information 

and apply it for calculating the current output [17]. Because 

of its structure, LSTM can avoid long-term dependency 

problems. Figure 2 illustrates the data flow and controlling 

through a memory cells and gates. 

The calculation formulae among variables are shown in (6) 

to (11). The first step is to decide what information to 

discard through the forgotten gate by equation (6). 

  1( , ) −=  +t f t t ff W h x b   (6) 

     The next step is to decide how much new information to 

add to the cell state by (7) and (8). 

  1( , ) −=  +t i t t ii W h x b  (7) 

  1( , ) −=  +t O t t oO W h x b  (8) 
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Fig. 2 The internal structure of a LSTM unit. 

      

where Wf, Wt and W0 are weight matrix for each gate and bf, 

bt and b0 are the bias for each gate. Then, the cell state can 

be updated by (9), 

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶�̃�           (9) 

     Lastly, determine what values to output by (10) and 

(11). This output will be based on cell state. 

 𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (10) 

 ℎ𝑡 = 𝑂𝑡 ∙ tanh (𝐶𝑡)  (11) 

where WC and bC are the weight matrix and the bias for each 

gate, respectively. 

D. Markov Chain  

     Using specific assumptions and probabilistic criteria, 

Markov models are characterized as stochastic processes 

with random variables that perform transition from one 

state to the next state. Therefore, the chance of a random 

process transitioning to the next feasible state is determined 

by the present state and is not significantly affected by prior 

states. 

To construct the transition probability matrix, {𝒙𝒕}𝒕≥𝟎 is 

a sequence of discrete random numbers. If the sequence 
{𝒙𝒕}𝒕≥𝟎  obeys the following equality, it is a MC and is 

expressed as [18]: 
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where t = 1, 2, 3, . . . for all states i and j. 
As shown in (12), only the most recent data in the series 

determines what happens in the next state. The equation 
shows that a MC is homogeneous because transition 
probabilities are independent of time-shifts. The 
conditional probabilities are mapped in a transition matrix 
(P). For n possible states, the transition matrix is expressed 
as  

 𝑃 = [

𝑝11 𝑝12
⋯ 𝑝1𝑛

𝑝21 𝑝22
⋯ 𝑝2𝑛

⋮
𝑝𝑛1

⋮
𝑝𝑛2

⋱ ⋮
⋯ 𝑝𝑛𝑛

] (13) 

where  𝑝𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑖=1

 for all states i and j. All the elements 

of P are non-negative (0 ≤ 𝑝𝑖𝑗≤ 1) and the sum of every row 

is ∑ 𝑝𝑖𝑗 = 1𝑛
𝑗=1 .  𝑎𝑖𝑗  is the number of transitions from states 

i to j. A transition probability matrix P is shown in Figure 
3. 

 

 
 

Fig. 3 The properties of a transition probability matrix. 

 

E. Weighted Markov Chain 
A weighted Markov chain [19] is used to determine the 

effect of each step's transition probability matrix and for 
data mining. A weighted MC involves the following stages: 

(1) Develop categorization criteria and apply these to each 
data set to determine its status. 

(2) At each step, create the Markov chain transition 
probability matrix. 

(3) Starting with the preceding data, predict the state 
probability using the related transition probability 
matrix. 

(4) For the Markov chain model, determine the weight of 
each step. 

(5) The final probability is the weighted sum of each 
predictor's probability for the same state.  

(6) Steps 1 through 5 are repeated for the subsequent round 
of prediction, adding the predicted value to the original 
data series. 

 

3. The Proposed Methods 

 
A. Wind Speed Correction 

The proposed wind speed ensemble forecasting system 

uses the clustering method, classification strategies, RF 

models, and the regression-based ensemble model. The 

general structure of ensemble wind speed forecast is 

depicted in Figure 4. Three processes make up the general 

framework: model training, creating an ideal set of weights, 

and model testing. The historical wind speed for k different 

weather situations is used in step 1 of the k-means 

clustering algorithm. Label as breeze, moderate, cool, 

strong, and powerful wind are the five clusters. Then, using 

the historical and forecasted weather 10-minute data as 

input and wind speed as an output, an RF model was built 

on each cluster. Additionally, the historical wind speed data 

used as input and the label produced by k-means clustering 

as output were used to train a k-nearest neighbour (KNN) 

classification model. The model determines the effect of the 

historical wind speed at time t-1 and the forecasted wind 

speed and wind direction at time t from weather research 

forecasting in order to correct the wind speed at time t.   
 

B. Wind Power Forecasting  

 The proposed method uses k-means clustering to 

classify historical WT power data based on power 

distribution by constructing several LSTM prediction 

models and establishing a weighted Markov chain 

probability matrix. Figure 5 shows a schematic diagram of 

the proposed method. A Markov chain prediction uses a 

Markov chain model with a step size of 1 and an initial state  
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 Fig. 4 Details of the wind speed correction model. 

vector to determine the absolute distribution for a future 

time. The period between data collection points is 10 

minutes. A total of 144 steps are required for each day. This 

study determines the effect of the historical power at time 

t-1, corrected wind speed and forecasted wind direction at 

time t, in order to forecast the power at time t. To determine 

the one-step ahead prediction value, the weighted Markov 

chain approach and LSTM models are used to calculate the 

final predicted value for the power by determining the 

weights at various phases. 

Details of the proposed scheme are described as follows: 

(1) The original data must be cleaned so missing values 

and outliers in the data must be processed. This study 

uses interpolation to supplement the missing values, 

which are then subject to the clustering process. 

(2) The data is adjusted after clustering. The normalization 

method for this study is shown in (14). The range of 

data after normalization is 0 to 1:  

  𝑥𝑛𝑜𝑟 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (14) 

where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛  are the maximum and minimum 

values of the measured WT power data, respectively. 

Fig. 5 Schematic diagram of the proposed method 

(3)  The best LSTM model for each cluster (k1, k2, k3, …, 

kn) is trained separately. The predicted LSTM series 

is denoted as (�̂�𝑡+1
(𝑘1)

, �̂�𝑡+1
(𝑘2)

, �̂�𝑡+1
(𝑘3)

, … , �̂�𝑡+1
(𝑘𝑛)

).  
(4)  Finally, a Markov chain model is used based on the 

transition probability matrix, and the forecasting 

results for the LSTM model for each cluster are 

weighted and summed. 

 

4. Numerical Results 

 

     The proposed method is tested using a 3.6 MW wind 

power generation system. The data was collected from 

January 2020 to December 2020 and includes wind power 

generation, wind speed and direction at a resolution of 10 

minutes. Weather prediction data were collected from the 

Solcast.com platform, which is a weather research 

forecasting platform. The results for one-step ahead wind 

power forecasting using each single model are compared 

for the wind power and speed data for the Changbin 

industrial area, Changhua, Taiwan. The proposed LSTM-

Markov models are then used for this case study. All 

learning algorithms are coded entirely in Python 3.7, 

which uses the Keras API in conjunction with the 

TensorFlow framework. The training data covers the first 

three weeks of every month. The testing data contains last 

week's data for every month, which is randomly selected 

from a day in each month and a day of each season. There 

is four times more training data than validation data. The 

final wind power time series is shown in Figure 6.  

The test results for each model are discussed. To 

determine the accuracy of the forecast, MRE, RMSE and 

NRMSE are used: 

 𝐌𝐑𝐄 =
𝟏

𝑵
∑

|𝑷𝒇𝒐𝒓𝒆−𝑷𝒕𝒓𝒖𝒆|

𝑷𝒄𝒂𝒑
× 𝟏𝟎𝟎%𝑵

𝒊=𝟏   (15) 

𝐑𝐌𝐒𝐄 = √
𝟏

𝑵
∑ (𝑷𝒇𝒐𝒓𝒆 − 𝑷𝒕𝒓𝒖𝒆)

𝟐𝑵
𝒊=𝟏   (16) 
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𝐍𝐑𝐌𝐒𝐄𝐜𝐚𝐩 = √𝟏

𝑵
∑ (

𝑷𝒇𝒐𝒓𝒆−𝑷𝒕𝒓𝒖𝒆

𝑷𝒄𝒂𝒑
)

𝟐
𝑵
𝒊=𝟏 × 𝟏𝟎𝟎%     (17) 

where Pfore is the estimated value, Ptrue is the actual value, Pcap 

is the capacity for wind power generation and the maximum 

wind speed for wind speed measurement and N is the number 

of data points. 

 

 
(a) 

 

 
(b) 

Fig. 6 The curves for (a) the training and (b) the testing 

datasets. 

 

     For this study, testing data is used, and performance is 

compared in terms of the forecasting results for the hybrid 

models and all single models as a power forecasting 

scenario. In the wind speed correction scenario, the 

forecasted wind speed from weather research forecasting 

and the corrected wind speed are compared.  

     Figure 7 shows the comparison results between 

forecasted wind speed and the corrected wind speed, at a 

resolution of 10 minutes. Table I lists the performance 

metrics for the forecasted wind speed and corrected wind 

speed results. The results show that the MRE, RMSE and 

NRMSE for the corrected wind speed are much better than 

the pure forecasted wind speed.   

     Figure 8 shows the one-step ahead forecasting results 

for four models and the results for the hybrid model, at a 

resolution of 10 minutes. Table II lists the performance 

metrics for the forecasting results for testing data for the 

different single models and the hybrid model. The results 

show that the proposed model gives the most accurate 

results for this case. 

     The prediction results for the different models are 

significantly different. Using this testing data, RF 

performs the worst of all models. The results for each 

dataset show that if WT power output fluctuates rapidly, 

the SVR model predictions also fluctuates, mainly because 

it climbs or decreases too quickly and by too great an 

amplitude, so outcomes are poor. The prediction results 

for the Bi-GRU also fluctuate over a short period of time, 

but not as much as the SVR model, so it has medium 

performance. The LSTM's forecasting results are quite flat 

and they approximately represent the variations in WT 

power generation. If the WT power output fluctuates 

quickly, the LSTM's predictions and the accuracy of the 

time when winds are strong is also reduced. The hybrid 

models benefit from each model's strengths to compensate 

for the weaknesses of other models, so they give the best 

overall performance. 

 

 
Fig. 7 One-step ahead wind speed correction results. 

 
Table I.  Forecasting Results for Wind Speed Forecasting and 

Correction 

 

Model MRE (%) RMSE (m/s) NRMSE (%) 

Forecasted Wind Speed 16.88 4.56 20 

Corrected Wind Speed 2.61 0.82 3.58 

 

 

 
Fig. 8 One-step ahead WT power forecasting results for all 

models 
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Table II.  Forecasting Results for Different Single Models and 

Proposed Hybrid Model 

 

Model MRE (%) RMSE (kW) NRMSE (%) 

SVR 3.90 210.52 5.85 

RF 4.27 271.22 7.55 

LSTM 2.81 187.07 5.12 

Bi-GRU 3.28 188.73 5.12 

Proposed 2.47 156.95 4.44 

    

5. Conclusions 

 

     This study uses a hybrid LSTM and Markov chain 

model for very short-term forecasting for WT power. The 

proposed method uses k-means clustering to partition 

wind power data into 5 clusters. LSTM models are then 

used to produce an initial prediction for each cluster. A 

weighted MC model and a LSTM are used to produce the 

final prediction. The results for testing on a 3.6 MW WT 

power generation system show that the RNN-based 

models such as LSTM and Bi-GRU give better accurate 

forecasts than all regression-based models such as RF and 

SVR; the LSTM performs respectably and the RF 

performs poorly. The hybrid models give a more accurate 

forecast than the single models because the hybrid model 

benefit from advantages of two or more models so 

prediction are more accurate. The proposed hybrid LSTM-

MC model performs very well after wind speed correction 

processing, but there is scope for improvement for the 

proposed hybrid MC model and wind speed correction 

scenario. The proposed models could use a higher order of 

the Markov chain model and use more accurate corrected 

wind speeds to further increase forecasting accuracy. 
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