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Abstract. This paper describes the optimization procedure of 
a two-dimensional multi-element hydrofoil shape during its 
design for small horizontal axis hydrokinetic turbines using 
response surface methodology. JavaFoil software was used for 
describing the hydrofoil performance under several combinations 
of geometrical parameters, such as the horizontal space (overlap), 
h, between the drag edge of the main element and the leading 
edge of the second element; the vertical distance (gap), d, of the 
flap from the main element trailing edge; and the flap deflection 
angle, �. Different experimental designs aiming at the 
maximization of the lift-to-drag ratio were used. The maximal 
lift-to-drag ratio was found to be 69.9626 for �, � and � equal to 
2.0%, 18.4619% and 20°, respectively, being � the factor 
exerting a considerable influence on the response variable. 
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1. Introduction 
 
Today, the growth of conventional hydropower plants is 
constrained by the number of available natural sites, large capital 
(initial) investment, extensive pay-back time, and environmental 
concerns [1], [2]. As a matter of fact, flooding land for a 
hydroelectric reservoir performance has an extreme 
environmental impact since it is involved in the destruction of 
forest, wildlife habitat and agricultural land, among other 
detrimental effects on the environment [1], [3]. Even in many 
instances, entire communities are required to be relocated to 
make way for man-made reservoirs [1-3].  
Nowadays, hydrokinetic systems offer many advantages 
compared to other sources of electrical energy production, 
especially compared to hydropower plants, as hydrokinetic 
systems are portable systems with small initial set-up costs, do 
not require large infrastructure and can be quickly deployed [1], 
[2]. Hydrokinetic systems employ a hydrokinetic turbine which 
utilizes the kinetic energy of flowing water for power generation 
[1]-[3]. From the viewpoint of engineering design, the more 
torque has the turbine rotor, the more power will be developed. 
Consequently, the generation of the maximal possible torque and 
turbine rotor velocity is desired at the design stage of a 
hydrokinetic system [1]-[3]. Torque and angular velocity of the 
rotor are achieved by hydrofoil lift forces. It must be taken into 
account that lift force depends of the change of pressure 
generated in the hydrofoil surface [2]-[3]. This pressure depends 
on various parameters, like fluid density, number or blades, tip 
speed ratio and hydrofoil profile shape (angle of attack, blade 
pitch, chord length and twist and its distribution along the blade 
span) [1-3].  

The parameters within a hydrokinetic turbine that designers 
seek to optimize have evolved in recent years [3], [4]. However, 
in general, efforts are focused on the maximization of the power 
coefficient, CP; i.e., the fraction of power in water that can be 
extracted by the hydrokinetic turbine [4]. The optimization 
strategy has a direct impact on the blade shape due to the 
hydrofoil shape contributes to the generation of a lift coefficient 
by creating suction on the hydrofoil upper surface [4], [5]. 
During this process, a drag is also generated, which is not 
desirable for the maximization of the power output of the 
hydrokinetic turbine [1]-[3]. To get the maximum torque and 
power output from the hydrokinetic turbine, having a hydrofoil 
generating high lift and high lift-to-drag ratio is of crucial 
interest [2], [3]. Therefore, for the selection of a proper turbine 
hydrofoil is very important at the initial stage of the design 
process. Nowadays, multi-element hydrofoils or high-lift 
systems have been proposed as an alternative concept allowing 
improving the blade performance [5]. In fact, in the literature 
there are few publications that consider multi-element hydrofoil 
in hydrokinetic turbines design [6]. From the authors’ 
knowledge, there is only one work considering the use of a 
double-blade hydrofoil for generating the maximum lift [7]. 
However, several numerical studies on multi-element airfoil 
configurations for wind turbines have been reported [8]-[10].  
A multi-element profile can be conformed of 3 or 2 elements, a 
main profile and 1 or 2 flaps [8]-[10]. The variables involved in 
the geometrical design of a multi-element hydrofoil are the 
chord length, c; the main element chord length, c1; the flap 
chord length, c2; the angle of attack, α; the gap size, d, defined 
as the minimal vertical distance of the flap from the main 
element trailing edge; the overlap distance, h, which refers to 
the distance of the flap leading edge from the main element 
trailing edge along the main element chord; and the flap 
deflection angle, � [8]-[10]. 
Several strategies have been proposed to optimize the 
parameters involved in the blade design, being response surface 
methodology (RSM) widely used in the aerodynamic 
optimization of airfoils [11]-[14]. RSM is defined as a 
collection of statistical and mathematical methods useful for 
developing and improving the optimization of a process, which 
uses collectively design of experiments (DOE), analysis of 
variance (ANOVA) and regression analysis. The methodology 
is a general approach to describe the behavior of certain output 
variables, known as response factors, towards the change of 
independent parameters, so-called independent factors; that is, 
the influencing variables [15]. For a well distributed number of 
design points in the space of the independent variables, a 
regression function; i.e., an objective function, is created 
through the least-square approach, which in turn can be used as 
the basis for different optimization purposes [15].  
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Thus, the current study is focused on the hydrodynamic 
optimization of several two-dimensional configurations of a 
multi-element hydrofoil for high lift applications. For this 
purpose, RSM is used to build a functional relationship between 
the influencing variables (d, h, and �) and the desired objective 
function; i.e., the lift-to-drag ratio. This ratio was maximized to 
obtain the highest power achieving a stable oper
water current.  
Thus, this work enables for the first time to optimize the 
geometrical parameters of a multi-element hydrofoil for 
hydrokinetic turbine application. 
 

2.  Methods and materials 
 

2.1 Hydrofoil characteristics 
 

High-lift systems have been designed in aircraft applications with 
the objective of achieving high levels of performance while 
maintaining the flow attached on the single
[10]. Due to there is a continuous need to improve the lift and 
lift-to-drag ratio of the hydrofoil for turbine application, the 
concept of multi-element hydrofoil can be used for the blade 
design of hydrokinetic turbines. A typical multi
hydrofoil often consists of a main element with a leading
slat and trailing-edge flap elements that can be hydro
dynamically highly efficient. However, a complex structure and 
an expensive design and maintenance costs are required 
Additionally, because of the interaction among each of its 
components and parts, the flow field around a multi
hydrofoil has very complicated physics, which are significantly 
influenced by the change in the distance between such as 
components and their � and � [16].  
 

Figure 1. Schema of the multi-element hydrofoil

In the present study, the Eppler 420 airfoil was used as the 
hydrofoil cross section (Figure 1). Furthermore, u
code, the profile was analyzed using different 
order to compute the hydrodynamic performance, such as the lift 
coefficient, CL, versus α, and the drag coefficient, C
Moreover, d was increased from 2%-chord to 4%
increased from 5%-chord to 20%-chord and 
from 20° to 40°. In order to reduce the number of design 
variables, α was fixed at 0° for a Reynolds number of 7.5x10
 

3. Response surface methodology
 

Response surface methodology (RSM) is used to approximate 
functional relationships between a response variable,
of design variables, �, which can be used to find the combination 
of factor levels for which the response variable is optimized 
In this context, the term “optimized” refers to either “maximize” 
or “minimize” [17]. It is highlighted that the 
of RSM is the number of experimental treatment combinations 
and simulations required to find the optimal conditions
reduced compared to the total number of treatment combinations 
used without utilizing RSM [18].  
On the other hand, the choice of the DOE to be used in each 
particular case can have a large influence on the accuracy of the 
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approximation and the cost of constructing the response surface 
associated. Different DOE can be used, such as full factorial 
design, fractional factorial design, central composite design 
(CCD), Plackett-Burman, Doehlert designs, Taguchi method 
and Box-Behnken design (BBD), among other DOE
The design procedure of RSM is as follows: 1) designing a 
series of experiments for an adequate and reliable measurement 
of the response of interest; 2) developing a mathemat
to construct the response surface containing the best fittings; 3) 
finding the optimal set of experimental parameters and levels 
that produces a maximal or min
variable, depending on the goal set previously according to the 
process to be optimized, 4) r
interactive effects of the parameters influencing the system 
through two- and three-dimensional 
Under this scenario, the effect of different geometrical 
on the performance of a multi
investigated using a 3-level 3-factor full factorial experimental 
design, a BBD and a CCD. The list of the independent variables 
(x1, x2, x3) with their codes and actual levels are presented in 
Table 1. The factor variables were studied and varied within 3 
levels a) a high level, represented as (+1); b) a low level, 
referred as (-1); and c) a middle point, expressed as (0). The 
response variable, represented as 
This response was intended to be maximized.
 

Table 1. Experimental range and levels of independent 
geometrical variables used during optimization procedures of 

the lift-to-drag ratio for a multi
Independent variable Real values of coded levels

-1 
Gap, � 2%-chord 

Overlap, � 5%-chord 

Flap deflection angle, � 20° 
-1: Factor at low level; 0: Factor at medium level; 

 

A second order polynomial equation was chosen to fit the 
experimental results. This model represents the main effects of 
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where, � is the predicted response, b
regression model; 
1, 
2 and 
corresponding to the main effects; 
product coefficients, which represent the coefficient for the 
interaction effects. Finally, 
11

coefficients. It is worth noting that a factor with a small 
individual or main effect can contribute greatly to the response 
by interacting with another one [16]
The contribution of each term in the regression and the 
significance of the model equations can be obtained through a 
fit test, known as ANOVA. This test is done by analyzing the 
magnitude of the sum of squares (SS), 
Fischer test (F-test) and the lack
sum of squares (SS) is a measure
used to estimate the variance of the mean value of a statistical 
analysis when scaled for the degrees of freedom (df). In turn, 
the F-test of a model evaluates its significance
the ratio between the regression MS and the residual MS
small F-value of the regression model is not desired since it 
indicates that the variance is caused by random unexplained 
disturbances referred to as “noise” [15]
value provides an indication of the significance of a model in 
relation with F-value. When p-
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product coefficients, which represent the coefficient for the 

11, 
22 and 
33 are the quadratic 
coefficients. It is worth noting that a factor with a small 
individual or main effect can contribute greatly to the response 

[16]-[18].  
The contribution of each term in the regression and the 
significance of the model equations can be obtained through a 
fit test, known as ANOVA. This test is done by analyzing the 
magnitude of the sum of squares (SS), mean squares (MS), the 

test) and the lack-of-fit test (LOF) [15]-[18]. The 
sum of squares (SS) is a measurement of variability, and can be 
used to estimate the variance of the mean value of a statistical 
analysis when scaled for the degrees of freedom (df). In turn, 

f a model evaluates its significance by calculating 
e ratio between the regression MS and the residual MS. A 

value of the regression model is not desired since it 
indicates that the variance is caused by random unexplained 

o as “noise” [15]-[18]. Additionally, p-
value provides an indication of the significance of a model in 

-value > F-value and p-value is 
lower than 0.05, the regression model is considered to be 
significant; therefore, the regression model built is able to 
explain the behavior of the studied factor variables, since the 
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chances that F-value is due to noise are < 5%. If p-value > F-
value and it is above 0.05, the regression model constructed is 
insignificant; i.e., it is not useful to explain the variability of the 
data obtained under the experimental domain considered [15]-
[18]. 
In turn, LOF determines the inability of a model to fit 
experimental data that are not represented in the experimental 
domain. This is commonly done by calculating its F-value. A 
small F-value for the LOF is desired, since the experimenter look 
for the model to fit experimental or simulated data. When p-value 
> F-value and it is greater than 0.05, the LOF for the model is 
insignificant and the model is able to fit any data that are not 
specified in the experimental domain [15]-[18]. Nonetheless, it 
must be noted that a desired LOF does not guarantee the 
adequacy of a model; as a consequence, the coefficient of 
determination (R²) must be also considered, given the fact that it 
measures the overall performance of the regression model built 
[15]-[18].. R2 provides the summary statistic that measures how 
well the regression expression fits the data. Therefore, R2 is 
expected to be as close to 1.0 as possible [15]. 
 

4. Results and discussion 
 

3.1 33 Full factorial design  
 

Full factorial DOE is probably the most common and intuitive 
strategy in DOE [15]. Therefore, the analyses of the obtained 
data were done using a standard full factorial (Table 2). This 
DOE represents the entire set of possible combinations among 
the levels of the factors run in a randomized sequence in order to 
meet the statistical requirement for independence of the 
observations [15]. For this purpose, each combination of the 
factor levels, known as treatments, was numerically processed 
using JavaFoil software. According to the DOE selected, 27 
studies were carried out and a second-order polynomial 
regression model was developed using the numerical results.  
 

Table 2. 33 Full factorial design matrix and responses 
Run Variables Lift-to-drag ratio % 

Error Gap, 
� (x1) 

Overlap, 
� (x2) 

Flap 
deflection 

angle, � (x3) 

Numerical 
results 

Predicted 
results 

1 3.0 20.0 30.0 56.7923 52.8070 7.02 

2 2.0 12.5 30.0 46.1229 54.1188 -17.34 

3 3.0 5.0 30.0 57.1184 48.8194 14.53 

4 2.0 20.0 30.0 56.6672 49.4835 12.68 

5 4.0 20.0 40.0 39.0216 39.6493 -1.61 

6 3.0 20.0 40.0 38.4138 41.0229 -6.79 

7 2.0 5.0 30.0 37.3814 45.2558 -21.07 

8 4.0 20.0 30.0 57.1197 51.6646 9.55 

9 4.0 12.5 20.0 62.7545 63.1664 -0.66 

10 2.0 5.0 20.0 52.8878 52.8158 0.14 

11 3.0 5.0 20.0 52.5983 56.6106 -7.63 

12 2.0 20.0 20.0 45.0923 51.2516 -13.66 

13 2.0 20.0 40.0 37.2452 37.9305 -1.84 

14 4.0 5.0 30.0 53.0677 47.9169 9.71 

15 2.0 5.0 40.0 33.9726 30.9109 9.01 

16 3.0 20.0 20.0 54.5086 57.8063 -6.05 

17 4.0 12.5 30.0 51.2703 56.5400 -10.28 

18 3.0 12.5 40.0 44.9122 44.3822 1.18 

19 2.0 12.5 20.0 72.4874 60.2829 16.84 

20 4.0 5.0 40.0 33.6988 33.1096 1.75 

21 4.0 20.0 20.0 56.6502 56.8951 -0.43 

22 3.0 12.5 20.0 72.0448 63.9577 11.23 

23 3.0 5.0 40.0 32.1947 34.2432 -6.36 

24 2.0 12.5 40.0 44.3630 41.1699 7.20 

25 4.0 12.5 40.0 41.7253 43.1286 -3.36 

26 3.0 12.5 30.0 48.6286 57.5624 -18.37 

27 4.0 5.0 20.0 52.7020 55.9394 -6.14 

 

Considering the hydrodynamic efficiency results obtained from 
the numerical simulation, several regression models were 
constructed, including a linear regression, two factor interaction 
and a quadratic model. In Table 3, the p-values and R2 achieved 
for each of the considered regression models were listed. The p-
values show that all the regression models built are significant 
ones; however, the quadratic regression model has the best 

accepted accuracy since almost 74% of the data variability is 
explained by the model with a p-value associated < 0.05.  
 

Table 3. Statistical parameters of the built regression models  
Regression model p-value R2 

Lineal regression model 0.0001 0.6044 
Two factor interaction regression model 0.0021 0.6125 

Quadratic regression model 0.0016 0.7359 

 

In turn, Table 4 indicates the results of ANOVA for identifying 
significant factors. Decision about the significance of a factor or 
effect is made based on the p-value. According to the results 
obtained, the factor x3 and the quadratic term for x2 are 
considered as significant factors on the lift-to-drag ratio. Values 
greater than 0.05 indicate the model terms are not significant. 
Furthermore, if there are many insignificant model terms 
(without considering those required supporting hierarchy), 
model reduction may improve the model. However, by deleting 
terms that are insignificant, in this case, R2 of the regression 
model was reduced. Therefore, in this occasion, any of the 
model terms were eliminated from the parameter list.  
 

Table 4. ANOVA for the fitted quadratic model using 33 full 
factorial design  

Terms Effect SS df MS F-ratio p-value 
Model  2218.8 9 246.533 5.26 0.0016 
A:Gap, d (x1) 15.5020 26.3787 1 26.3787 0.56 0.4632 
B:Overlap, h (x2) 2.7551 71.5575 1 71.5575 1.53 0.2332 
C:Flap deflection angle, � (x3) 0.8934 1724.39 1 1724.39 36.82 0.0000 
AA -2.2329 29.917 1 29.917 0.64 0.4352 
AB -0.0159 0.1728 1 0.1728 0.00 0.9523 
AC 0.01861 0.6414 1 0.6414 0.01 0.9082 
BB -0.1199 273.309 1 273.309 5.84 0.0272 
BC 0.01861 23.3844 1 23.3844 0.50 0.4894 
CC -0.0339 69.05118 1 69.05118 1.47 0.2412 
Error  796.141 17 46.8318   
Total   3014.94 26    

 

Equation (2) indicates the quadratic regression model fitted to 
the obtained data. Using this model, the optimal values for x1, 
x2 and x3 so that the lift-to-drag ratio is equal to 64.20 are 
3.3216%, 12.8145% and 20°, respectively.  
 

� 	 14.8934 � 15.5020�
 � 2.7551�� � 0.8934��
− 0.0159�
�� − 0.0231�
��
� 0.01861���� − 2.23291�


�

− 0.1199��
� − 0.0339��

� 

(2) 

 

 

From the regression model, a three-dimensional response 
surface plot, represented by Figure 2, was generated. 
 

 
Figure 2. Response surface plot showing the effects of 

independent variables, gap, � (x1) and overlap, � (x2), on the 
lift-to-drag ratio using 33 full factorial design 
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3.2 Box-Behnken design (BBD) 
 

A 15-run BBD to identify the significant factors for maximizing 
the lift-to-drag ratio was also conducted. Using the relations 
listed in Table 1, the actual levels of the variables for each of the 
numerical studies in the design matrix were calculated. The 
results obtained from numerical simulation in JavaFoil software 
are given in Table 5.  
 

Table 5. BBD experimental design matrix and responses 
Run Variables Lift-to-drag ratio % 

Error Gap, 
� (x1) 

Overlap, 
� (x2) 

Flap 
deflection 
angle, � 

(x3) Numerical 
results 

Predicted 
results 

1 2.0 20.0 30.0 56.6672 58.3298 -2.93 

2 4.0 12.5 40.0 41.7253 46.8709 -12.33 

3 3.0 5.0 40.0 32.1947 28.7118 10.82 

4 3.0 12.5 30.0 48.6286 48.6286 0.00 

5 2.0 12.5 40.0 44.3630 42.3812 4.47 

6 3.0 12.5 30.0 48.6286 48.6286 0.00 

7 3.0 5.0 20.0 52.5983 52.6286 -0.06 

8 3.0 20.0 40.0 38.4138 38.7329 -0.83 

9 3.0 12.5 30.0 48.6286 48.6286 0.00 

10 4.0 12.5 20.0 62.7545 64.7363 -3.16 

11 3.0 20.0 20.0 54.5086 57.9915 -6.39 

12 2.0 12.5 20.0 72.4874 67.3418 7.10 

13 2.0 5.0 30.0 37.3814 42.8461 -14.62 

14 4.0 20.0 30.0 57.1197 51.6550 9.57 

15 4.0 5.0 30.0 53.0677 51.4051 3.13 

 

Several regression models for the response variable were 
constructed, including a linear, two factor interaction and a 
quadratic regression model, as observed in Table 6. The 
adequacy of the models was evaluated by R2 and p-value. The 
analysis of the results reveal that the quadratic model has the 
highest R2 (0.9007) with a p-value lower than 0.05 (0.0448). The 
value of R² shows that only 9.99% of the total variation of the 
obtained data could not be explained by the referred regression 
model. Therefore, it can be concluded that this regression model 
resulted to be a highly significant model. 
 

Table 6. Statistical parameters of the built regression models 
Regression model p-value R2 

Linear model 0.0040 0.6875 
Two factor interaction model 0.0448 0.7372 

Quadratic model 0.0448 0.9007 

 

The equation of the quadratic regression model describing the 
lift-to-drag ratio is expressed in Equation (3). From Equation (3), 
predicted values for each combination of the considered levels of 
the factors are presented in Table 5. 
 

� 	 123.6540 − 38.5053�
 � 3.4999�� − 1.8045��
− 0.5078�
�� � 0.1774�
��
� 0.01436���� � 6.6671�


�

− 0.01436��
� � 0.0004��

� 

     
(3) 

 

where y refers to the lift-to-drag ratio, and x1, x2, and x3 are the 
coded levels for the �, �, and �, respectively.  
 

Table 7. ANOVA for the fitted quadratic model using BBD 
Term Effect SS df MS F-ratio p-value 

Model  1365.8 9 151.756 5.04 0.0448 
A:Gap, d (x1) -38.5053 1,77492 1 1,77492 0,06 0,8178 
B:Overlap, h (x2) 3.4999 123,773 1 123,773 4,11 0,0984 
C:Flap deflection angle,	� (x3) -1.8045 917,033 1 917,033 30,46 0,0027 
AA 6.6671 164,121 1 164,121 5,45 0,0668 
AB -0.5078 58,0172 1 58,0172 1,93 0,2237 
AC 0.1774 12,5855 1 12,5855 0,42 0,5464 
BB -0.01436 66,2740 1 66,274 2,20 0,1980 
BC 0.01436 4,6414 1 4,64144 0,15 0,7108 
CC 0.0004 0,0050 1 0,0050 0,00 0,9902 
Error   150,5290 5 30,1059   
Total   1516,330 14    

 

In Table 7, the results obtained from the ANOVA are compiled. 
It can be observed that the term x3 has the highest F-value and the 
lowest p-value, which means that the settling time has the largest 
effect on the lift-to-drag ratio. The rest of the model terms have 
no significant influence on the lift-to-drag ratio. The term CC, 
related to the quadratic effect of �, was eliminated from the list of 

parameters influencing the system because it was observed to 
have the highest p-value and higher than 0.05. Following the 
elimination of this term, R2 was not modified but the p-value 
associated with the model decreased to 0.0155, lower than 
0.0448. Therefore, by eliminating insignificant terms the 
significance of the regression model increased.  
 

 
Figure 3. Response surface plot showing the effects of 

independent variables, gap, � (x1) and overlap, � (x2), on the 
lift-to-drag ratio using BBD 

 

Once the regression model is constructed, the optimal value for 
the lift-to-drag ratio was calculated resulting to be 69.9626 
when � (x1); � (x2); and � (x3) were equal to 2.0%, 18.4619% 
and 20°, respectively. The response surface obtained can be 
found in Figure 3. 
 

3.3 Central composite design (CCD)  
 

CCD corresponds to first-order (2k) designs augmented by 
additional center and axial points to allow estimation of the 
tuning parameters of a second-order model [15]. In this study, 
the CCD created was composed of a 23 DOE plus star points, 
studying the effects of 3 factors in 16 runs, as observed in Table 
8. It is important to note that the design was run in a single 
block and the order of the experiments was fully randomized. 
This kind of DOE presents an alternative DOE to 3k design in 
the construction of regression models and finding the optimal 
conditions for a particular process, since using CCD the number 
of experiments is reduced, as compared to a full factorial DOE 
(16 in the case of CCD compared to 27 for a full factorial 
design). Consequently, the saving in operating costs when 
finding the optimal domain for a process to be operated or 
manufactured is substantially high. 
 

Table 8. CCD experimental design matrix and responses 
Run Variables Lift-to-drag ratio % 

Error Gap, 
� (x1) 

Overlap, 
� (x2) 

Flap 
deflection 
angle, � 

(x3) 

Numerical 
results 

Predicted 
results 

1 3.0 12.5 30.0 48.6286 54.9636 -13.03 
2 2.0 5.0 40.0 33.9726 34.8062 -2.45 
3 2.0 20.0 20.0 45.0923 47.8801 -6.18 
4 3.0 12.5 40.0 44.9122 46.2583 -3.00 
5 4.0 5.0 40.0 33.6988 32.4948 -3.57 
6 2.0 5.0 20.0 52.8878 53.5548 -1.26 
7 4.0 20.0 20.0 56.6502 57.4004 -1.32 
8 4.0 20.0 40.0 39.0216 39.9383 -2.35 
9 3.0 5.0 30.0 57.1184 53.3456 6.61 
10 2.0 20.0 40.0 37.2452 35.3528 5.08 
11 2.0 12.5 30.0 46.1229 43.7269 5.19 
12 3.0 12.5 20.0 72.0448 64.3637 10.66 
13 3.0 20.0 30.0 56.7923 54.2300 4.51 
14 4.0 5.0 20.0 52.7020 56.1782 -6.60 
15 4.0 12.5 30.0 51.2703 47.3313 7.68 
16 3.0 12.5 30.0 48.6286 54.9636 -13.03 

 

 

The numerical results were fitted by multiple linear regression 
using a linear model, two factor interaction model and quadratic 
model. Table 9 contains the p-values and R2 of the regression 
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models used. From the table, the highest R2 found is linked to the 
quadratic regression model. Although the p-value associated to 
the regression model is higher than 0.05, its value is close to 
0.05. In this regard, it can be concluded that the best regression 
models among the regression model constructed using CCD for 
the maximization of the lift-to-drag ratio response variable was 
the quadratic regression model.  
 

Table 9. Statistical parameters of the built regression models 
Regression model p-value R2 

Lineal regression model 0.0138 0.5750 
Two factor interaction regression model 0.1182 0.6122 

Quadratic regression model 0.0518 0.8582 

 
The estimated effects of each operating variable and the ANOVA 
results for the quadratic regression model are presented in Table 
10. The interaction effect between � (C) term and the quadratic 
term referred to � (BB) term on the lift-to-drag ratio was found to 
be significant. The other model terms had no significant 
influence on the lift-to-drag ratio. From the quadratic regression 
model, the term related to the quadratic effect for � (CC) was 
eliminated from the parameter list because it has the highest p-
value and it is higher than 0.05. When this term was eliminated, 
R2 still adopted an acceptable value equal to 0.85801 with an 
associated p-value lower than 0.05. Deleting the rest of the 
insignificant terms resulted in a reduction of R2. Therefore, any 
model term was additionally removed from the parameter list. If 
CC term is eliminated, the final equation in terms of coded 
factors was given as expressed by Equation (4). 
 
 

Table 10. ANOVA for the fitted quadratic model using CCD 
Terms Effect SS df MS F-ratio p-value 

Model with CC  1274.61 9 141.623 4.04 0.0518 
Model without CC  1274.29 8 159.286 5.29 0.0204 
A:Gap, d (x1) 59.2367 32.4796 1 32.4796 0.93 0.3732 
B:Overlap, h (x2) -0.7303 1.9554 1 1.9554 0.06 0.8212 
C:Flap deflection angle, � (x3) -1.0028 819.508 1 819.508 23.35 0.0029 
AA -9.4345 234.663 1 234.663 10.31 0.0184 
AB 0.2299 23.7840 1 23.7840 0.68 0.4419 
AC -0.1234 12.1759 1 12.1759 0.35 0.5773 
BB -0.0209 3.6446 1 3.6446 0.09 0.7685 
BC 0.0207 19.3526 1 19.3526 0.55 0.4858 
CC 0.0035 0.3181 1 0.3181 0.01 0.9272 
Error  210.562 6 35.0936   
Total   1485.17 15    

 

y 	 −5.5234 � 58.5735x
 − 0.7794x� − 0.7944x�
� 0.2299x
x� − 0.1234x
x�
� 0.0207x�x� − 9.324x


�

− 0.01894x�
� 

(4) 

 
 

 
Figure 4. Response surface plot showing the effects of 

independent variables, gap, � (x1) and overlap, � (x2), on the lift-
to-drag ratio using CCD 

 
 

Using this model, the optimal value of 64.52 for the lift-to-drag 
ratio is achieved when the factors x1, x2 and x3 are equal to 
3.1237%, 9.3329% and 20°, respectively. This can be observed in 
Figure 4, representing the response surface for the lift-do-drag 
ratio under the experimental domain. 

3.4 Comparing DOE for the second order 
linear regression model  
 

For all the obtained DOE, the factor resulting with the highest 
effect on the response variable was �, represented by x3. For the 
studied DOE, the optimal value of the referred factor was 20°. 
However, it is important to note that DOE methods are used to 
significantly reduce the amount of time and computational 
effort consumed in analyzing the effect of varying factors 
affecting a model and analyzing their effect on a response [15], 
[16]. Using DOE, the runs are structured in such a way that the 
effects of the main factors and the two-way interactions 
between factors are considered [15]-[16]. In DOE, representing 
the relation between independent variables and response 
variables is possible by constructing an effective response 
surface. The determination of the optimal values or operating 
conditions for the parameters included in the models can be 
achieved through regression analysis techniques [15]-[18].  
It is highlighted that the full factorial design is usually 
considered impractical, due to the excessive number of 
experiments (or simulations) needed to construct the 
relationship between the responses (function values) and factors 
(independent variables) by regression analyses. Therefore, other 
DOE such as BBD and CCD are preferred since a reduced 
number of runs are required and the number of runs becomes 
prevalent in the practice when higher-order interactions of the 
factors can be ignored [15]. Adding runs to DOE do not always 
lead to a rise in R2. This reduction in runs results in lower costs. 
From the obtained results, the best R2 was obtained through the 
BBD with 15 runs. Additionally, the regression model obtained 
from BBD allowed for the highest lift-to-drag ratio with a p-
value lower than 0.05 by using only 15 runs. Through this 
DOE, the optimal values for x1, x2 and x3 factors were 2.0%, 
18.4619% and 20°, respectively. Under this treatment, the 
maximal lift-to-drag ratio was 69.9626.  
 

3.5 Verification of the regression model 
assumptions 
 
There are several assumptions that must be checked (among 
them the assumption of normality; i.e., the data obtained 
following a normal distribution), because the validity of the 
obtained regression model depends on this aspect.  
Normality can be assessed graphically, by constructing both a 
frequency distribution and a normal probability plot for the 
obtained data, where data following a normal distribution are 
adjusted to the represented line [15]. In Figure 5, both 
frequency distribution (Figure 5a) and normal probability plot 
(Figure 5b) for the lift-to-drag ratio are illustrated. In the figure, 
it is not clear if normality is achieved, since in Figure 5a data do 
not exactly follow the line representing a normal distribution. 
Additionally, in Figure 5b some of the data seem to be away 
from the straight line, which refers to normality. Although 
visual inspection of the distribution might be used for assessing 
normality, this approach is usually unreliable and does not 
guarantee that the data distribution is normal. Therefore, 
numerical tests must be performed [15]. The main tests for the 
assessment of normality are Kolmogorov-Smirnov test 
(including Limiting from, Stephens methods, Marsaglia method 
and Lilliefors test), Shapiro-Wilk test, Shapiro-Francia test, 
Anderson-Darling test, Cramer-von Mises test, D’Agostino and 
Pearson test, and Jarque-Bera test. 
 

The results of the normality tests showed that the lift-to-drag 
ratio followed a normal distribution. In addition to normality 
verification, homoscedasticity, linearity and residual 
independency were checked. It was achieved that the regression 
model built through BBD can be used to explain the simulated 
data found. 
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a) 

 
b) 

Figure 5. a) Histogram and b) Normal probability plot for the lift-
to-drag ratio response variable using BBD 

 
 

4.  Conclusion 
 

RSM is a useful and powerful tool to provide a prediction model 
representing the lift-to-drag ratio, as well as the optimal 
conditions of the factors influencing the performance of a multi-
element hydrofoil, in order to achieve the highest possible 
performance. In the current work, several DOE, including a 3k 
full factorial design, BBD and CCD were conducted to obtain the 
optimal values for �, � and �. It was found that by using BBD 
the maximal lift-to-drag ratio was 69.9626. This value was 
achieved under �, � and � equal to 2.0%, 18.4619% and 20°, 
respectively. Additionally, it was found that the lift-to-drag ratio 
is strongly affected by the variations of �.  
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