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Abstract. Wind energy is one of the most promising 

renewable energies. But wind is a quite unstable resource due to 

its continuous variation and random nature. This uncertainty 

affects the production cost. Therefore, accurate forecasting of 

wind and energy is very interesting for energy markets. In this 

work, we test a recent and powerful intelligent technique, 

extreme gradient boosting (XGBoost), for wind prediction. The 

forecasting models of some wind features with XGBoost are 

compared with Support Vector Regression (SVR), Gaussian 

Process Regression (GPR) and Neural Networks (NN) models. 

Specifically, the three features predicted are the active power 

generated by the turbine, the wind speed, and the wind direction. 

The results conclude that these techniques are useful for wind 

and energy forecasting, with XGBoost being the most 

outstanding one, especially for short-term predictions. 

 

Key words. Wind energy, forecasting, Machine 

learning, XGBoost. 
 

 

1) Introduction 
 

Within the European framework, some objectives have 

been set to promote the use of renewable energies. The 

European Union (EU) has pledged that a 32% of energy 

production will came from renewable sources by 2030. In 

2018, the EU produced 160 GW of onshore and 19 GW of 

offshore wind energy. This made-up 14% of the electricity 

demand. Nowadays, it continues to be the second form of 

energy generation capacity [1]. 

 

Wind power forecasting plays an active role in reducing 

operating costs and enhancing the competitiveness of wind 

power. Even more, it is a must for the integration of the 

wind power with existing electricity grids of different 

scales. 

 

There are two ways to predict wind power, namely: 

directly, based on historical power data, or to forecast 

wind speed first, and use the wind power curve of a 

specific wind turbine to obtain the output wind power [2]. 

We focused on the first approach. 

 

Nowadays, different Artificial Intelligence (AI) and 

Machine Learning (ML) techniques have been applied to 

deal with wind turbines [3], [4] and specifically for 

forecasting wind features [5]. For instance, in [6], authors 

reach a 99% accuracy applying techniques such as 

Extreme Gradient Boosting (XGBoost), decision trees or 

Random Forest (RF) when forecasting long-term wind 

speed values. 

 

In this work, we have tested four machine learning 

algorithms to model different wind parameters in the 

short-term. We have used XGBoost and compared the 

predictions with the models obtained with Support Vector 

Regression (SVR), Gaussian Process Regression (GPR) 

and Neural Networks (NN) models. The three features 

predicted are the active power generated by the turbine, 

the wind speed, and the wind direction. 

 

Different error metrics have been used to compare those 

forecasting models and, although all of them are efficient, 

XGBoost has shown the best performance. Besides, it has 

been proved the importance of the processing of the data. 

 

The structure of the paper is as follows: In section 2, the 

chosen dataset and the pre-processing methods applied in 

the project are described. In section 3, we discuss the 

classification of the forecasting methods, and describe 

XGBoost and the algorithms to compare. In section 4, we 

present the evaluation metrics applied in the training and 

testing processes of the algorithms. In section 5, the results 

of XGBoost are shown and compared with the other 

algorithms. In section 6, we summarize the work and draw 

some conclusions and future works. 
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2) Materials: Dataset and data pre
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-

processing 
 

The dataset used has been obtained from the SCADA 

system (Supervisory Control and Data Acquisition) of a 

wind turbine which is generating power in Turkey [7]. The 

data have been measured every 10-minute intervals from 

01/01/2018 to 12/12/2018. 

 

Figure 1 shows an example of some of the data collected, 

units, and main features. 

 

 
Fig. 1. Samples of the dataset with values of the wind features 

 

The wind parameters selected for the study are LV Active 

Power (kW), the power generated by the turbine; Wind 

Speed (m/s), the wind speed at the hub height of the 

turbine; and Wind Direction (°), the wind direction at the 

hub of the turbine. 

 

A. Pre-processing 

 

The following pre-processing steps have been applied to 

the data. 

 

1) Downsampling. To reduce the computational 

load and to prevent overfitting, the dataset, the 

signals have been decimated by D; that is, keep 

one sample every D samples. 

In our case, D = 2, thus the time interval has been 

extended using measures every 20 minutes. 

2) Split the dataset into training and test. The 

dataset is split into two different subsets. One is 

used to train the algorithm, with the 60% of the 

samples. The other 40% is used to validate and 

evaluate the fitted model. 

3) Normalization. To better discriminate and to 

minimize the presence of outliers in the subsets 

and speed up the algorithm training, the subsets 

have been normalized applying the following 

formula: 

 

𝒁𝒊 =  
(𝑿𝒊− 𝝁)

𝝈
 (1) 

 

Where Zi is the normalized value of Xi, µ is the 

mean of the dataset and σ is the standard 

deviation. 

4) Formatting of the subsets. Finally, the inputs and 

outputs of the algorithms must follow some 

guidelines [8]. They are defined as: 

 

𝒊𝒏𝒑𝒖𝒕 = {𝒙𝒕, 𝒙𝒕−𝟏, 𝒙𝒕−𝟐, … , 𝒙𝒕−𝑴}; 
𝒐𝒖𝒕𝒑𝒖𝒕 =  𝒙𝒕+∆ 

 

Where t is the reference timestamp, from which 

the prediction will be made, x is the value of the 

time series in t, M is the number of past values to 

use as input, and Δ is time at when we want to 

obtain the predicted value. 

 

It is important to carefully select M and Δ, which 

once set, will be constants during the training. To 

obtain the best combination of those parameters 

for each algorithm, different values have been 

tested and compared: 

 

• M: 72, 216 and 504 (1 day, 3 days and 1 week, 

respectively). 

 

• Δ: 3, 18, 36 and 72 (1 hour, 6 hours, 12 hours and 

1 day, respectively). 

 

3) Methods 
 

There are different ways to classify forecasting methods, 

according to time intervals, applied models, accuracy, etc. 

According to [9], we can classify the forecasting models 

here presented as follows: 

 

• By time scale: short, medium, and long term. Our 

models have been tested considering different time 

intervals. 

• By the prediction model: 

o Statistical, machine learning methods: Gradient 

Tree Boosting and Multi-layer Perceptron (MLP) 

Regression. 

o Combined methods: SVR and GPR. 

• By the accuracy of output data: deterministic/point 

prediction. 

• By the prediction physical quantity: The models have 

been trained with three parameters: wind speed, wind 

direction, and power. 

• By the input data: historical data. The data used in the 

project was measured by a SCADA system. 

 

In this project, we are going to focus on the behaviour of 

the following forecasting algorithms, which are briefly 

described: 

 

A. XGBoost 

 

XGBoost is an optimized distributed gradient boosting 

algorithm designed to be highly efficient, flexible, and 

portable, available as an open-source package. The most 

important factor behind the success of XGBoost is its 

scalability in all scenarios. It is faster than other popular 

solutions on a single machine and scales to billions of 

examples in distributed or memory-limited settings. [10]. 
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This work uses the XGBoost gradient tree boosting 

algorithm, which is an evolution of the tree ensemble 

model: 

 

Given a dataset D with 𝑛 examples and 𝑚 features, a tree 

ensemble model uses K additive functions to predict the 

output: 

 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)} (‖𝐷‖ = 𝑛,  𝑥𝑖  ∈  ℝ𝑚, 𝑦𝑖 ∈  ℝ),  (2) 

𝑦̂𝑖 =  𝜙(𝑥𝑖) =  ∑ 𝑓𝑘(𝑥𝑖)𝐾
𝑘=1 , 𝑓𝑘 𝜖 ℱ, (3) 

ℱ = {𝑓(𝑥) =  𝑤𝑞(𝑥)}(𝑞 ∶  ℝ𝑚  → 𝑇, 𝑤 ∈  ℝ|𝑇|) (4) 

 

Where ℱ is the space of regression trees; q is the structure 

of each tree that maps an example to the corresponding 

leaf index; T is the set of leaf indexes, thus |𝑇| is the 

number of leaves in the tree; and 𝑓𝑘 is an independent tree 

structure q; w is the leaf weights. Unlike decision trees, 

each regression tree contains a continuous score on each 

leaf. We use 𝑤𝑖  to represent the score on the i-th leaf. 

 

For a given example, we will use the decision rules in the 

trees (given by 𝑞) to classify it into the leaves and calculate 

the final prediction by summing up the score in the 

corresponding leaves (given by 𝑚). 

 

To learn the set of functions used in the model, we 

minimize the following regularized objective: 

 

ℒ(𝜙) = ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖)𝑖 +  ∑ Ω(𝑓𝑘)𝑘 , (5) 

Ω(𝑓) =  𝛾𝑇 + 
1

2
𝜆‖𝑤‖2 (6) 

 

Where ℒ is the differentiable convex loss function that 

measures the difference between the prediction 𝑦̂𝑖 and the 

target 𝑦𝑖; Ω penalizes the complexity of the model; 𝛾 is the 

first regularization term; and 𝜆 denotes the second 

regularization term, which smooths the final learnt 

weights to avoid over-fitting. 

 

Intuitively, the regularized objective will tend to select a 

model employing simple and predictive functions. 

 

However, the tree ensemble model cannot be optimized 

using traditional optimization methods in Euclidean space, 

so it must be trained in an additive manner [10]:  

 

ℒ (𝑡) =  ∑ 𝑙 (𝑦𝑖, 𝑦̂𝑖
(𝑡−1)

+  𝑓𝑡(𝑥𝑖)) +  Ω(𝑓𝑡) (7)

 
 

Where ℒ is the regularized learning objective; l is a 

differentiable convex loss function that measures the 

difference between the prediction and the target; 𝑦̂𝑖
(𝑡)

 is the 

prediction of the i-th instance of the t-th iteration; Ω is the 

function that penalizes the complexity of the model; and ft 

is the function added to minimize the objective. 

 

B. Gaussian Process Regression 

 

Gaussian process regression is a non-parametric (not 

limited by a functional form) Bayesian approach towards 

regression problems [11, 12]. In GPR, we select a prior 

distribution over a function 𝑓 and condition this 

distribution on the observations, using the posterior 

distribution to make predictions. Within this prior GP, 

prior knowledge about the space of functions can be 

incorporated through the selection of the mean and 

covariance functions. The prior Gaussian process is 

defined by its mean and covariance functions as: 

 
𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥´)) (8) 

 

Where m(x) is the mean function and k(x, x’) is the 

covariance function, also known as the kernel function. 

 

Then, a posterior distribution is generated. Given X (the 

input variables), the expected value of the output variables 

y can be predicted. Previous observations and predictions 

follow a multivariate normal distribution, as: 

 

[
𝑦𝑡

𝑓⋆
]  ~ 𝑁 (0, [

𝐾(𝑋𝑡  , 𝑋𝑡) +  𝜎𝜖
2𝐼 𝐾(𝑋𝑡  , 𝑋⋆)

𝐾(𝑋⋆, 𝑋𝑡) 𝐾(𝑋⋆, 𝑋⋆)
]) (9) 

 

Where K(Xt , Xt) is the covariance matrix between all 

observed points so far, K(X⋆, X⋆) is the covariance matrix 

between the newly introduced points, K(X⋆, Xt) is the 

covariance matrix between the new input points and the 

already observed points, K(Xt , X⋆) is the covariance matrix 

between the observed points and the new input points, I is 

identity matrix, and σε
2 is assumed noise level of 

observations. 

 

In this work we used a Radial Basis Function RBF 

(Squared Exponential) kernel. The Gaussian RBF is: 

 

𝐾(𝑋1, 𝑋2) = exp (− 
‖𝑋1− 𝑋2‖2

2𝜎2 ) (10) 

 

Where σ is the overall variance and ||X₁ - X₂|| is the 

Euclidean Distance between two points. Also, we applied 

the range [1, 20] of integers on intervals of three for alpha, 

which establishes a variance of the additional Gaussian 

measurement of noise on training observations. 

 

C. Support Vector Regression 
 

When a Support Vector Machine (SVM) is used in 

regression, it is called Support Vector Regression or SVR. 

SVR, unlike SVM, only has one kind of sample points, and 

the optimal hyperplane it seeks is to minimize the total 

deviation between sample points and that hyperplane [13]. 

 

SVR utilizes a subset of the provided dataset to construct 

a function estimator, as follows: 

 

𝑓(𝑥) =  〈𝑤, Φ(𝑥)〉 + 𝑏 (11) 

 

Where w is a weighted feature vector, b is the intercept, 

Φ(·) represents the mapping and x is the input vector. 

 

To allow SVR to handle nonlinear data, a kernel function 

that transforms the original input data to a higher-

dimensional space, referred to as a kernel space, is 

proposed [14].  SVR finds a hyperplane that maximizes 

the distance between two training data subsets and 
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minimizes the error between the forecasted value and the 

actual value [15]. 

 

After several simulations to find the best configuration, we 

used the RBF kernel. For the C parameter, a 

hyperparameter to control error, we used 1, 100 and 1000. 

For epsilon, which defines a margin of tolerance where no 

penalty is given to errors, we used a range of [0.1, 0.9], 

intervals of 0.2. Finally, we considered two values for 

gamma, which defines how far the influence of a single 

training example reaches, where low implies it reaches 

‘far’ and high implies ‘close’. Those values are defined as: 

 

𝛾1 =  
1

𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
  𝛾2 =  

1

𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 · 𝜎2 
 (7) 

 

Where “n features” refers to the number of features and σ 

is the overall variance. 

 

D. Multi-layer Perceptron Regressor 

 

MLP is a supervised neural network algorithm that learns 

a nonlinear function and maps inputs to outputs by training 

on a dataset [16]. The MLP consists of three or more layers 

(an input layer, an output layer, and one or more hidden 

layers). Each node in one layer connects with a certain 

weight to every node in the following layer.  

 

The input layer consists of a set of neurons, with X 

representing the inputs. The output layer receives 

information from the last hidden layer and transforms it 

into output values. In each hidden layer, each neuron 

accumulates the values from the previous layer as a 

weighted linear summation with a bias, followed by a 

nonlinear activation function. 

 

For instance, the output at the j-th node of the first hidden 

layer is given by: 

 

𝑜𝑢𝑡 = 𝑔(∑ 𝑤𝑗𝑖𝑥𝑖 +  𝑏𝑗𝑖 ) (12) 

 

Where g is the nonlinear activation function, wji is the 

weight of the i-th input in the j-th neuron of the first hidden 

layer and bj the bias of the j-th neuron of the first hidden 

layer. 

 

4) Evaluation of the forecasting methods 
 

To determine which algorithm is the best for forecasting 

each wind feature, training and testing were carried out 

combining each wind feature, different values of M and Δ, 

and the algorithms. The metrics to evaluate and compare 

the algorithms are the following [17]: 

 

A. RMSE (Root Mean Square Error) as a measure of 

how spread out the residuals: 
 

𝑅𝑀𝑆𝐸 = [∑
(𝑥𝑖− 𝑥𝑖)2

𝑁
]1/2  (13) 

 

B. MAE (Mean Absolute Error) is the mean amount of 

error in the measurements: 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑥𝑖 − 𝑥| (14) 

 

C. Coefficient of determination R2 is the ratio of total 

variation of data points explained by the regression 

line and total variation of data points from the mean: 

 

𝑅2 =  
𝑆𝑆𝑅

𝑆𝑆𝑇
=  

∑(𝑥𝑖− 𝑥̅)2

∑(𝑥𝑖− 𝑥̅)2  (15) 

 

5) Results and discussion 

 
Detailed results are shown of the best technique for each 

wind feature, although all of them are compared in the last 

subsection. The following tables show the best results 

obtained for each evaluation method and each 

combination of M and Delta parameters. 

 

A. Active Power 
 

In Figure 2, the forecasting of active power using the 

XGBoost technique is shown. The blue line are the real 

data and the red one the prediction. As it is possible to 

observe, the algorithm fits well the predictions, although 

the higher and lower values are harder to predict correctly. 
 

 
Fig. 2. Active Power prediction for M = 72, Δ = 3 

The numerical results for all the combinations are shown 

in Table 1. The boldfaced values are the best results. 

 
Table 1. Active Power results for each combination of M and Δ 

with XGBoost 

M Δ RMSE MAE R2 

72 

3 482.4018 335.0285 0.864667 

18 941.2131 750.04142 0.479454 

36 1138.9793 959.85287 0.240119 

72 1284.1493 1096.6035 0.082377 

216 

3 502.0565 340.33766 0.864416 

18 953.8013 750.01071 0.481711 

36 1144.7827 972.82888 0.242018 

72 1288.3964 1105.88849 0.07601 

504 

3 532.6081 336.25796 0.863716 

18 994.7580 759.937 0.470599 

36 1182.2283 958.34544 0.229319 

72 1258.1828 1095.18485 0.07357 
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B. Wind Speed 

 

In Figure 3, the forecasting of wind speed using XGBoost 

is shown. The blue line are the real data and the red one 

the prediction. As it is possible to observe, predicted 

values fit well, being lower and higher values harder to 

obtain correctly. 
 

 
Fig. 3. Wind Speed prediction for M = 72, Δ = 3 

The numerical results for all the combinations are shown 

in Table 2. The boldfaced values are the best results. 

 
Table 2. Wind Speed results for each combination of M and Δ 

with XGBoost 

M Δ RMSE MAE R2 

72 

3 1.436387 1.07365 0.865559 

18 2.80246 2.19508 0.488321 

36 3.386817 2.71107 0.2537 

72 3.740795 2.99105 0.09255 

216 

3 1.443943 1.07902 0.8656 

18 2.812568 2.20391 0.4904 

36 3.411496 2.71501 0.25128 

72 3.768315 3.01633 0.08846 

504 

3 1.44859 1.08109 0.86428 

18 2.83819 2.24 0.47841 

36 3.43103 2.7308 0.23731 

72 3.7695 2.9956 0.0817 

 

C. Wind Direction 

 

In Figure 4, the forecasting of wind direction using the 

XGBoost technique is shown. The blue line are the real 

data and the red one the prediction. 

 

 
Fig. 4. Wind Direction prediction for M = 72, Δ = 3 

As it is possible to observe, the predicted values fit worse 

than in the other features. 

 

The numerical results for all the combinations are shown 

in Table 3. The boldfaced values are the best results. 

 
Table 3. Wind Direction results for each combination of M and 

Δ with XGBoost 

M Δ RMSE MAE R2 

72 

3 44.3778 20.57955 0.726623 

18 63.43407 38.83586 0.441982 

36 70.35669 48.42757 0.31444 

72 77.1177 59.58934 0.17778 

216 

3 44.64334 20.654462 0.725628 

18 63.540016 38.610825 0.444848 

36 70.2878 47.94277 0.321609 

72 77.12268 56.95441 0.184393 

504 

3 45.22584 21.10568 0.723168 

18 63.9277 38.929135 0.44744 

36 70.9534 48.4449 0.320285 

72 77.5956 58.828 0.188304 

 

The following tables show the best results of each model 

for the three wind parameters. 

 
Table 4. Comparison between the algorithms results for Active 

Power 

Algorithm M Δ Best RMSE MAE R2 

XGBoost 72 3 482.4018 335.0285 0.8646 

GPR 72 3 487.8276 338.8071 0.8616 

SVR 72 3 497.8148 330.3092 0.8558 

MLP 72 3 529.3002 371.6042 0.837 

 
Table 5. Comparison between the algorithms results for Wind 

Speed 

Algorithm M Δ Best RMSE MAE R2 

XGBoost 72 3 1.4363 1.0736 0.8655 

GPR 72 3 1.4402 1.0705 0.8648 

SVR 72 3 1.4907 1.1035 0.8551 

MLP 72 3 1.6242 1.228 0.8281 

 
Table 6. Comparison between the algorithms results for Wind 

Direction 

Algorithm M Δ Best RMSE MAE R2 

XGBoost 72 3 44.3778 20.5795 0.7266 

GPR 72 3 45.8228 21.0369 0.7085 

SVR 72 3 46.9885 19.9221 0.6935 

MLP 72 3 46.9521 22.1195 0.6939 

 

The best results are always the combination of the smallest 

values of M and Δ. For each M, the smaller the parameter 

delta is, the better the predictions result. The same happens 
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if we compare the results between different values of M. 

Also, each model shows a similar behaviour: as soon as 

we increase any of those parameters, the results worsen. 

We can conclude that all of them work better for 

immediate-short-term or short-term predictions rather 

than long-term.  

 

Regarding the predictions, they all follow the same 

evolution regardless of the model. As the prediction time 

increases, the results worsen. Also, the predicted errors 

stop reaching higher values but accumulate a larger one 

instead. These models are good for short-term forecasting, 

but when it comes to using them, we must be aware that 

the further we want to predict, the less accurate those 

predictions will be. Regarding the error obtained based on 

Δ value, all models worsen in a similar way. Despite of 

that, it is worth mentioning that XGBoost has the best R2 

results in almost any case, although with a slight 

difference. 

 

Besides, we tested the models removing 10000 samples 

from the dataset, and the results obtained were worse than 

the ones we show here. With these tests, it is possible to 

conclude that the results shown above can be improved by 

extending the training data. 

 

Looking at the tables above, we can see that XGBoost has 

the best results for every error metric, except for the MAE, 

being the GPR and SVR algorithms which obtain the best 

results for wind power and wind direction, and wind speed 

respectively. This happens because the predictions 

obtained from these algorithms do not reach extreme 

values as XGBoost. This means that XGBoost can 

accumulate a larger error, which is translated in a higher 

MAE. 

 

6) Conclusions and future works 
 

In this project, different machine learning algorithms have 

been applied to predict the behaviour of the wind and, 

consequently, the produced power. Nonetheless, 

predicting the future with a 100% of accuracy is a difficult 

task. We can only make more or less precise estimations 

of future values based on the fidelity of measured data in 

the past. The wind features studied here are the active 

power generated by the turbine, the wind speed, and the 

wind direction. 

 

The forecasting algorithms used are gradient boosting 

(XGBoost), Support Vector Regression (SVR), Gaussian 

Process Regression (GPR) and neural networks (NN) 

models, being the best results for the chosen features 

obtained with XGBoost.  

 

That is, XGBoost is a good tool for forecasting. Compared 

to other ML models, it is accurate and trustworthy, and it 

gave better results than the other algorithms tested, with 

acceptable errors. 

 

Future works include combine some of these machine 

learning techniques, in an assemble system, to improve the 

results, and to forecast other variables. 
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