

21th International Conference on Renewable Energies and Power Quality (ICREPQ’23)
Madrid (Spain), 24th to 26th May 2023

Renewable Energy and Power Quality Journal (RE&PQJ)

ISSN 2172-038 X, Vol.21 No.4, 2023

Evaluation of XGBoost vs. other Machine Learning models for wind

parameters identification

B. García-Puente1, A. Rodríguez-Hurtado1, M. Santos2 and J.E. Sierra-García3

1 Faculty of Computer Sciences, Complutense University

C/ Profesor García Santesmases 9, 28040-Madrid (Spain)

e-mail: beleng11@ucm.es, antrod03@ucm.es

2 Institute of Knowledge Technology, Complutense University

C/ Profesor García Santesmases 9, 28040-Madrid (Spain)

e-mail: msantos@ucm.es

3 Electromechanical Engineering Department, University of Burgos

Avn. Cantabria sn, 09006-Burgos (Spain)

e-mail: jesierra@ubu.es

Abstract. Wind energy is one of the most promising

renewable energies. But wind is a quite unstable resource due to

its continuous variation and random nature. This uncertainty

affects the production cost. Therefore, accurate forecasting of

wind and energy is very interesting for energy markets. In this

work, we test a recent and powerful intelligent technique,

extreme gradient boosting (XGBoost), for wind prediction. The

forecasting models of some wind features with XGBoost are

compared with Support Vector Regression (SVR), Gaussian

Process Regression (GPR) and Neural Networks (NN) models.

Specifically, the three features predicted are the active power

generated by the turbine, the wind speed, and the wind direction.

The results conclude that these techniques are useful for wind

and energy forecasting, with XGBoost being the most

outstanding one, especially for short-term predictions.

Key words. Wind energy, forecasting, Machine

learning, XGBoost.

1) Introduction

Within the European framework, some objectives have

been set to promote the use of renewable energies. The

European Union (EU) has pledged that a 32% of energy

production will came from renewable sources by 2030. In

2018, the EU produced 160 GW of onshore and 19 GW of

offshore wind energy. This made-up 14% of the electricity

demand. Nowadays, it continues to be the second form of

energy generation capacity [1].

Wind power forecasting plays an active role in reducing

operating costs and enhancing the competitiveness of wind

power. Even more, it is a must for the integration of the

wind power with existing electricity grids of different

scales.

There are two ways to predict wind power, namely:

directly, based on historical power data, or to forecast

wind speed first, and use the wind power curve of a

specific wind turbine to obtain the output wind power [2].

We focused on the first approach.

Nowadays, different Artificial Intelligence (AI) and

Machine Learning (ML) techniques have been applied to

deal with wind turbines [3], [4] and specifically for

forecasting wind features [5]. For instance, in [6], authors

reach a 99% accuracy applying techniques such as

Extreme Gradient Boosting (XGBoost), decision trees or

Random Forest (RF) when forecasting long-term wind

speed values.

In this work, we have tested four machine learning

algorithms to model different wind parameters in the

short-term. We have used XGBoost and compared the

predictions with the models obtained with Support Vector

Regression (SVR), Gaussian Process Regression (GPR)

and Neural Networks (NN) models. The three features

predicted are the active power generated by the turbine,

the wind speed, and the wind direction.

Different error metrics have been used to compare those

forecasting models and, although all of them are efficient,

XGBoost has shown the best performance. Besides, it has

been proved the importance of the processing of the data.

The structure of the paper is as follows: In section 2, the

chosen dataset and the pre-processing methods applied in

the project are described. In section 3, we discuss the

classification of the forecasting methods, and describe

XGBoost and the algorithms to compare. In section 4, we

present the evaluation metrics applied in the training and

testing processes of the algorithms. In section 5, the results

of XGBoost are shown and compared with the other

algorithms. In section 6, we summarize the work and draw

some conclusions and future works.

388 RE&PQJ, Vol.21 No.4, 2023https://doi.org/10.24084/repqj21.3882

2) Materials: Dataset and data pre

RE&PQJ, Vol.21 No.4, 2023

-

processing

The dataset used has been obtained from the SCADA

system (Supervisory Control and Data Acquisition) of a

wind turbine which is generating power in Turkey [7]. The

data have been measured every 10-minute intervals from

01/01/2018 to 12/12/2018.

Figure 1 shows an example of some of the data collected,

units, and main features.

Fig. 1. Samples of the dataset with values of the wind features

The wind parameters selected for the study are LV Active

Power (kW), the power generated by the turbine; Wind

Speed (m/s), the wind speed at the hub height of the

turbine; and Wind Direction (°), the wind direction at the

hub of the turbine.

A. Pre-processing

The following pre-processing steps have been applied to

the data.

1) Downsampling. To reduce the computational

load and to prevent overfitting, the dataset, the

signals have been decimated by D; that is, keep

one sample every D samples.

In our case, D = 2, thus the time interval has been

extended using measures every 20 minutes.

2) Split the dataset into training and test. The

dataset is split into two different subsets. One is

used to train the algorithm, with the 60% of the

samples. The other 40% is used to validate and

evaluate the fitted model.

3) Normalization. To better discriminate and to

minimize the presence of outliers in the subsets

and speed up the algorithm training, the subsets

have been normalized applying the following

formula:

𝒁𝒊 =
(𝑿𝒊− 𝝁)

𝝈
 (1)

Where Zi is the normalized value of Xi, µ is the

mean of the dataset and σ is the standard

deviation.

4) Formatting of the subsets. Finally, the inputs and

outputs of the algorithms must follow some

guidelines [8]. They are defined as:

𝒊𝒏𝒑𝒖𝒕 = {𝒙𝒕, 𝒙𝒕−𝟏, 𝒙𝒕−𝟐, … , 𝒙𝒕−𝑴};
𝒐𝒖𝒕𝒑𝒖𝒕 = 𝒙𝒕+∆

Where t is the reference timestamp, from which

the prediction will be made, x is the value of the

time series in t, M is the number of past values to

use as input, and Δ is time at when we want to

obtain the predicted value.

It is important to carefully select M and Δ, which

once set, will be constants during the training. To

obtain the best combination of those parameters

for each algorithm, different values have been

tested and compared:

• M: 72, 216 and 504 (1 day, 3 days and 1 week,

respectively).

• Δ: 3, 18, 36 and 72 (1 hour, 6 hours, 12 hours and

1 day, respectively).

3) Methods

There are different ways to classify forecasting methods,

according to time intervals, applied models, accuracy, etc.

According to [9], we can classify the forecasting models

here presented as follows:

• By time scale: short, medium, and long term. Our

models have been tested considering different time

intervals.

• By the prediction model:

o Statistical, machine learning methods: Gradient

Tree Boosting and Multi-layer Perceptron (MLP)

Regression.

o Combined methods: SVR and GPR.

• By the accuracy of output data: deterministic/point

prediction.

• By the prediction physical quantity: The models have

been trained with three parameters: wind speed, wind

direction, and power.

• By the input data: historical data. The data used in the

project was measured by a SCADA system.

In this project, we are going to focus on the behaviour of

the following forecasting algorithms, which are briefly

described:

A. XGBoost

XGBoost is an optimized distributed gradient boosting

algorithm designed to be highly efficient, flexible, and

portable, available as an open-source package. The most

important factor behind the success of XGBoost is its

scalability in all scenarios. It is faster than other popular

solutions on a single machine and scales to billions of

examples in distributed or memory-limited settings. [10].

389https://doi.org/10.24084/repqj21.3882

This work uses the XGBoost gradient tree boosting

algorithm, which is an evolution of the tree ensemble

model:

Given a dataset D with 𝑛 examples and 𝑚 features, a tree

ensemble model uses K additive functions to predict the

output:

𝐷 = {(𝑥𝑖 , 𝑦𝑖)} (‖𝐷‖ = 𝑛, 𝑥𝑖 ∈ ℝ𝑚, 𝑦𝑖 ∈ ℝ), (2)

𝑦̂𝑖 = 𝜙(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖)𝐾
𝑘=1 , 𝑓𝑘 𝜖 ℱ, (3)

ℱ = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞 ∶ ℝ𝑚 → 𝑇, 𝑤 ∈ ℝ|𝑇|) (4)

Where ℱ is the space of regression trees; q is the structure

of each tree that maps an example to the corresponding

leaf index; T is the set of leaf indexes, thus |𝑇| is the

number of leaves in the tree; and 𝑓𝑘 is an independent tree

structure q; w is the leaf weights. Unlike decision trees,

each regression tree contains a continuous score on each

leaf. We use 𝑤𝑖 to represent the score on the i-th leaf.

For a given example, we will use the decision rules in the

trees (given by 𝑞) to classify it into the leaves and calculate

the final prediction by summing up the score in the

corresponding leaves (given by 𝑚).

To learn the set of functions used in the model, we

minimize the following regularized objective:

ℒ(𝜙) = ∑ 𝑙(𝑦̂𝑖 , 𝑦𝑖)𝑖 + ∑ Ω(𝑓𝑘)𝑘 , (5)

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 (6)

Where ℒ is the differentiable convex loss function that

measures the difference between the prediction 𝑦̂𝑖 and the

target 𝑦𝑖; Ω penalizes the complexity of the model; 𝛾 is the

first regularization term; and 𝜆 denotes the second

regularization term, which smooths the final learnt

weights to avoid over-fitting.

Intuitively, the regularized objective will tend to select a

model employing simple and predictive functions.

However, the tree ensemble model cannot be optimized

using traditional optimization methods in Euclidean space,

so it must be trained in an additive manner [10]:

ℒ (𝑡) = ∑ 𝑙 (𝑦𝑖, 𝑦̂𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) (7)

Where ℒ is the regularized learning objective; l is a

differentiable convex loss function that measures the

difference between the prediction and the target; 𝑦̂𝑖
(𝑡)

 is the

prediction of the i-th instance of the t-th iteration; Ω is the

function that penalizes the complexity of the model; and ft

is the function added to minimize the objective.

B. Gaussian Process Regression

Gaussian process regression is a non-parametric (not

limited by a functional form) Bayesian approach towards

regression problems [11, 12]. In GPR, we select a prior

distribution over a function 𝑓 and condition this

distribution on the observations, using the posterior

distribution to make predictions. Within this prior GP,

prior knowledge about the space of functions can be

incorporated through the selection of the mean and

covariance functions. The prior Gaussian process is

defined by its mean and covariance functions as:

𝑓(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥´)) (8)

Where m(x) is the mean function and k(x, x’) is the

covariance function, also known as the kernel function.

Then, a posterior distribution is generated. Given X (the

input variables), the expected value of the output variables

y can be predicted. Previous observations and predictions

follow a multivariate normal distribution, as:

[
𝑦𝑡

𝑓⋆
] ~ 𝑁 (0, [

𝐾(𝑋𝑡 , 𝑋𝑡) + 𝜎𝜖
2𝐼 𝐾(𝑋𝑡 , 𝑋⋆)

𝐾(𝑋⋆, 𝑋𝑡) 𝐾(𝑋⋆, 𝑋⋆)
]) (9)

Where K(Xt , Xt) is the covariance matrix between all

observed points so far, K(X⋆, X⋆) is the covariance matrix

between the newly introduced points, K(X⋆, Xt) is the

covariance matrix between the new input points and the

already observed points, K(Xt , X⋆) is the covariance matrix

between the observed points and the new input points, I is

identity matrix, and σε
2 is assumed noise level of

observations.

In this work we used a Radial Basis Function RBF

(Squared Exponential) kernel. The Gaussian RBF is:

𝐾(𝑋1, 𝑋2) = exp (−
‖𝑋1− 𝑋2‖2

2𝜎2) (10)

Where σ is the overall variance and ||X₁ - X₂|| is the

Euclidean Distance between two points. Also, we applied

the range [1, 20] of integers on intervals of three for alpha,

which establishes a variance of the additional Gaussian

measurement of noise on training observations.

C. Support Vector Regression

When a Support Vector Machine (SVM) is used in

regression, it is called Support Vector Regression or SVR.

SVR, unlike SVM, only has one kind of sample points, and

the optimal hyperplane it seeks is to minimize the total

deviation between sample points and that hyperplane [13].

SVR utilizes a subset of the provided dataset to construct

a function estimator, as follows:

𝑓(𝑥) = 〈𝑤, Φ(𝑥)〉 + 𝑏 (11)

Where w is a weighted feature vector, b is the intercept,

Φ(·) represents the mapping and x is the input vector.

To allow SVR to handle nonlinear data, a kernel function

that transforms the original input data to a higher-

dimensional space, referred to as a kernel space, is

proposed [14]. SVR finds a hyperplane that maximizes

the distance between two training data subsets and

390 RE&PQJ, Vol.21 No.4, 2023https://doi.org/10.24084/repqj21.3882

minimizes the error between the forecasted value and the

actual value [15].

After several simulations to find the best configuration, we

used the RBF kernel. For the C parameter, a

hyperparameter to control error, we used 1, 100 and 1000.

For epsilon, which defines a margin of tolerance where no

penalty is given to errors, we used a range of [0.1, 0.9],

intervals of 0.2. Finally, we considered two values for

gamma, which defines how far the influence of a single

training example reaches, where low implies it reaches

‘far’ and high implies ‘close’. Those values are defined as:

𝛾1 =
1

𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 𝛾2 =

1

𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 · 𝜎2
 (7)

Where “n features” refers to the number of features and σ

is the overall variance.

D. Multi-layer Perceptron Regressor

MLP is a supervised neural network algorithm that learns

a nonlinear function and maps inputs to outputs by training

on a dataset [16]. The MLP consists of three or more layers

(an input layer, an output layer, and one or more hidden

layers). Each node in one layer connects with a certain

weight to every node in the following layer.

The input layer consists of a set of neurons, with X

representing the inputs. The output layer receives

information from the last hidden layer and transforms it

into output values. In each hidden layer, each neuron

accumulates the values from the previous layer as a

weighted linear summation with a bias, followed by a

nonlinear activation function.

For instance, the output at the j-th node of the first hidden

layer is given by:

𝑜𝑢𝑡 = 𝑔(∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗𝑖) (12)

Where g is the nonlinear activation function, wji is the

weight of the i-th input in the j-th neuron of the first hidden

layer and bj the bias of the j-th neuron of the first hidden

layer.

4) Evaluation of the forecasting methods

To determine which algorithm is the best for forecasting

each wind feature, training and testing were carried out

combining each wind feature, different values of M and Δ,

and the algorithms. The metrics to evaluate and compare

the algorithms are the following [17]:

A. RMSE (Root Mean Square Error) as a measure of

how spread out the residuals:

𝑅𝑀𝑆𝐸 = [∑
(𝑥𝑖− 𝑥𝑖)2

𝑁
]1/2 (13)

B. MAE (Mean Absolute Error) is the mean amount of

error in the measurements:

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑥𝑖 − 𝑥| (14)

C. Coefficient of determination R2 is the ratio of total

variation of data points explained by the regression

line and total variation of data points from the mean:

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑(𝑥𝑖− 𝑥̅)2

∑(𝑥𝑖− 𝑥̅)2 (15)

5) Results and discussion

Detailed results are shown of the best technique for each

wind feature, although all of them are compared in the last

subsection. The following tables show the best results

obtained for each evaluation method and each

combination of M and Delta parameters.

A. Active Power

In Figure 2, the forecasting of active power using the

XGBoost technique is shown. The blue line are the real

data and the red one the prediction. As it is possible to

observe, the algorithm fits well the predictions, although

the higher and lower values are harder to predict correctly.

Fig. 2. Active Power prediction for M = 72, Δ = 3

The numerical results for all the combinations are shown

in Table 1. The boldfaced values are the best results.

Table 1. Active Power results for each combination of M and Δ

with XGBoost

M Δ RMSE MAE R2

72

3 482.4018 335.0285 0.864667

18 941.2131 750.04142 0.479454

36 1138.9793 959.85287 0.240119

72 1284.1493 1096.6035 0.082377

216

3 502.0565 340.33766 0.864416

18 953.8013 750.01071 0.481711

36 1144.7827 972.82888 0.242018

72 1288.3964 1105.88849 0.07601

504

3 532.6081 336.25796 0.863716

18 994.7580 759.937 0.470599

36 1182.2283 958.34544 0.229319

72 1258.1828 1095.18485 0.07357

391 RE&PQJ, Vol.21 No.4, 2023https://doi.org/10.24084/repqj21.3882

B. Wind Speed

In Figure 3, the forecasting of wind speed using XGBoost

is shown. The blue line are the real data and the red one

the prediction. As it is possible to observe, predicted

values fit well, being lower and higher values harder to

obtain correctly.

Fig. 3. Wind Speed prediction for M = 72, Δ = 3

The numerical results for all the combinations are shown

in Table 2. The boldfaced values are the best results.

Table 2. Wind Speed results for each combination of M and Δ

with XGBoost

M Δ RMSE MAE R2

72

3 1.436387 1.07365 0.865559

18 2.80246 2.19508 0.488321

36 3.386817 2.71107 0.2537

72 3.740795 2.99105 0.09255

216

3 1.443943 1.07902 0.8656

18 2.812568 2.20391 0.4904

36 3.411496 2.71501 0.25128

72 3.768315 3.01633 0.08846

504

3 1.44859 1.08109 0.86428

18 2.83819 2.24 0.47841

36 3.43103 2.7308 0.23731

72 3.7695 2.9956 0.0817

C. Wind Direction

In Figure 4, the forecasting of wind direction using the

XGBoost technique is shown. The blue line are the real

data and the red one the prediction.

Fig. 4. Wind Direction prediction for M = 72, Δ = 3

As it is possible to observe, the predicted values fit worse

than in the other features.

The numerical results for all the combinations are shown

in Table 3. The boldfaced values are the best results.

Table 3. Wind Direction results for each combination of M and

Δ with XGBoost

M Δ RMSE MAE R2

72

3 44.3778 20.57955 0.726623

18 63.43407 38.83586 0.441982

36 70.35669 48.42757 0.31444

72 77.1177 59.58934 0.17778

216

3 44.64334 20.654462 0.725628

18 63.540016 38.610825 0.444848

36 70.2878 47.94277 0.321609

72 77.12268 56.95441 0.184393

504

3 45.22584 21.10568 0.723168

18 63.9277 38.929135 0.44744

36 70.9534 48.4449 0.320285

72 77.5956 58.828 0.188304

The following tables show the best results of each model

for the three wind parameters.

Table 4. Comparison between the algorithms results for Active

Power

Algorithm M Δ Best RMSE MAE R2

XGBoost 72 3 482.4018 335.0285 0.8646

GPR 72 3 487.8276 338.8071 0.8616

SVR 72 3 497.8148 330.3092 0.8558

MLP 72 3 529.3002 371.6042 0.837

Table 5. Comparison between the algorithms results for Wind

Speed

Algorithm M Δ Best RMSE MAE R2

XGBoost 72 3 1.4363 1.0736 0.8655

GPR 72 3 1.4402 1.0705 0.8648

SVR 72 3 1.4907 1.1035 0.8551

MLP 72 3 1.6242 1.228 0.8281

Table 6. Comparison between the algorithms results for Wind

Direction

Algorithm M Δ Best RMSE MAE R2

XGBoost 72 3 44.3778 20.5795 0.7266

GPR 72 3 45.8228 21.0369 0.7085

SVR 72 3 46.9885 19.9221 0.6935

MLP 72 3 46.9521 22.1195 0.6939

The best results are always the combination of the smallest

values of M and Δ. For each M, the smaller the parameter

delta is, the better the predictions result. The same happens

392 RE&PQJ, Vol.21 No.4, 2023https://doi.org/10.24084/repqj21.3882

if we compare the results between different values of M.

Also, each model shows a similar behaviour: as soon as

we increase any of those parameters, the results worsen.

We can conclude that all of them work better for

immediate-short-term or short-term predictions rather

than long-term.

Regarding the predictions, they all follow the same

evolution regardless of the model. As the prediction time

increases, the results worsen. Also, the predicted errors

stop reaching higher values but accumulate a larger one

instead. These models are good for short-term forecasting,

but when it comes to using them, we must be aware that

the further we want to predict, the less accurate those

predictions will be. Regarding the error obtained based on

Δ value, all models worsen in a similar way. Despite of

that, it is worth mentioning that XGBoost has the best R2

results in almost any case, although with a slight

difference.

Besides, we tested the models removing 10000 samples

from the dataset, and the results obtained were worse than

the ones we show here. With these tests, it is possible to

conclude that the results shown above can be improved by

extending the training data.

Looking at the tables above, we can see that XGBoost has

the best results for every error metric, except for the MAE,

being the GPR and SVR algorithms which obtain the best

results for wind power and wind direction, and wind speed

respectively. This happens because the predictions

obtained from these algorithms do not reach extreme

values as XGBoost. This means that XGBoost can

accumulate a larger error, which is translated in a higher

MAE.

6) Conclusions and future works

In this project, different machine learning algorithms have

been applied to predict the behaviour of the wind and,

consequently, the produced power. Nonetheless,

predicting the future with a 100% of accuracy is a difficult

task. We can only make more or less precise estimations

of future values based on the fidelity of measured data in

the past. The wind features studied here are the active

power generated by the turbine, the wind speed, and the

wind direction.

The forecasting algorithms used are gradient boosting

(XGBoost), Support Vector Regression (SVR), Gaussian

Process Regression (GPR) and neural networks (NN)

models, being the best results for the chosen features

obtained with XGBoost.

That is, XGBoost is a good tool for forecasting. Compared

to other ML models, it is accurate and trustworthy, and it

gave better results than the other algorithms tested, with

acceptable errors.

Future works include combine some of these machine

learning techniques, in an assemble system, to improve the

results, and to forecast other variables.

Acknowledgments

This work was partially supported by the Spanish Ministry

of Science, Innovation and Universities under

MCI/AEI/FEDER Project no. PID2021-123543OB-C21.

References

[1] European Commission, “Guidance document on wind

energy projects and EU legislation on nature protection”,

(2020).

[2] Wang, Y., Zou, R., Liu, F., Zhang, L. and Liu, Q., “A review

of wind speed and wind power forecasting with deep neural

networks”, Applied Energy (2021). Vol. 304, pp. 117766.

[3] Sierra-García, J. E. and Santos, M. “Switched learning

adaptive neuro-control strategy”, Neurocomputing (2021).

Vol. 452, pp. 450-464.

[4] Sierra-García, J. E., and Santos, M. “Neural networks and

reinforcement learning in wind turbine control”. Revista

Iberoamericana de Automática e Informática Industrial

(2021). Vol. 18, no 4, pp. 327-335.

[5] Sacie, M., Santos, M., López, R., and Pandit, R., “Use of

state-of-art machine learning technologies for forecasting

offshore wind speed, wave and misalignment to improve

wind turbine performance”, Journal of Marine Science and

Engineering (2022). Vol. 10, no 7, pp. 938.

[6] Ahmadi, A., Nabipour, M., Mohammadi-Ivatloo, B.,

Amani, A. M., Rho, S. and Piran, M. J., “Long-term wind

power forecasting using tree-based learning algorithms”,

IEEE Access (2020). Vol. 8, pp. 151511-151522.

[7] https://www.kaggle.com/datasets/berkerisen/wind-turbine-

scada-dataset

[8] Filik, Ü. B. and Filik, T., “Wind speed prediction using

artificial neural networks based on multiple local

measurements in Eskisehir”, Energy Procedia (2017). Vol.

107, pp. 264-269.

[9] Wang, Y., Zou, R., Liu, F., Zhang, L. and Liu, Q., “A review

of wind speed and wind power forecasting with deep neural

networks”, Applied Energy (2021). Vol. 304, pp. 117766.

[10] Chen, T. and Guestrin, C., “Xgboost: A scalable tree

boosting system”, In Proceedings of the 22nd acm sigkdd

international conference on knowledge discovery and data

mining (2016). Pp. 785-794.

[11] Schulz, E., Speekenbrink, M. and Krause, A., “A tutorial on

Gaussian process regression: Modelling, exploring, and

exploiting functions”, Journal of Mathematical Psychology

(2018). Vol. 85, pp. 1-16.

[12] Guevara, C., and Santos, M. “Intelligent models for

movement detection and physical evolution of patients with

hip surgery”. Logic Journal of the IGPL (2021). Vol. 29, no

6, pp. 874-888.

[13] Quan, Q., Hao, Z., Xifeng, H. and Jingchun, L., “Research

on water temperature prediction based on improved support

vector regression”, Neural Computing and Applications

(2020). Pp. 1-10.

[14] Zhang, F. and O'Donnell, L. J., “Support vector regression”,

In Machine Learning, Academic Press (2020). Pp. 123-140.

[15] Zhang, Z., Ding, S. and Sun, Y., “A support vector

regression model hybridized with chaotic krill herd

algorithm and empirical mode decomposition for regression

task”, Neurocomputing (2020). Vol. 410, pp. 185-201.

[16] Feng, X., Ma, G., Su, S. F., Huang, C., Boswell, M. K. and

Xue, P. “A multi-layer perceptron approach for accelerated

wave forecasting in Lake Michigan”, Ocean Engineering

(2020). Vol. 211, pp. 107526.

[17] Grandini, M., Bagli, E. and Visani, G., “Metrics for multi-

class classification: an overview”, arXiv preprint

arXiv:2008.05756 (2020).

393 RE&PQJ, Vol.21 No.4, 2023https://doi.org/10.24084/repqj21.3882

