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Abstract. Ever increasing demands for renewable energy 

sources are the driving force for the development of waste 

management technologies such as anaerobic digestion (AD) 

technology. For AD process understanding and optimization the 

numerical simulations provide a useful tool. Therefore, in this 

work, the main attention is focused on the development of an 

efficient and stable optimization approach. The optimization 

procedure is coupled with a suitable mechanistically inspired self-

developed BioModel. For BioModel calibration, a special 

procedure was developed which incorporates the used BioModel, 

a sensitivity analysis, and a gradient-based optimization 

algorithm. The results of numerical simulation, obtained by the 

AD of various animal manures in a batch lab-scale bioreactor, 

confirm the reliability of BioModel and the efficiency of the 

presented calibration procedure. Furthermore, the results of AD 

process optimization show that the biogas quantity and quality as 

well as energy used up for bioreactor heating can be improved 

essentially when amount of added bacteria, temperature and pH 

values are optimized properly. 
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1. Introduction 

 
In recent times, the interest in biogas technology through 

anaerobic digestion (AD) has gradually increased due to the 

energy and environmental benefits it offers. AD technology 

gives opportunities to reduce a large amount of various 

types of waste, reduce greenhouse gas emissions to the 

atmosphere, and produce renewable energy [1]. Namely, 

AD technology enables a substantial reduction of waste 

entering landfills and reduction of greenhouse gas 

emissions in the range between 3,290 and 4,360 Mt CO2,eq, 

which is equivalent to 10-13% of the world’s current 

emissions [2]. Furthermore, in 2020 about 66 billion m3 of 

biogas was produced by AD process. The produced amount 

is equivalent to energy content of 1.52 EJ and it is expected 

to increase up to 14.4 EJ in 2050 [2].  

In general, the AD process can be divided into hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis, in which 

microorganisms breakdown organic matter in the absence 

of oxygen to biogas. The quality and quantity of the 

produced biogas depend mainly on feedstock substrate and 

process parameters. 

In order to improve the AD performance, a lot of effort is 

put into the understanding of the AD process by 

experimental and numerical simulation (NS) studies. Since 

the experimental studies of the AD process are time 

consuming, various mechanistically inspired mathematical 

models were developed already, based on ADM1 [3]-[5] or 

on BioModel [6]-[10]. Unfortunately, these models include 

a lot of unknown or hard-to-determine parameters, which 

have to be calibrated. Till today various more or less 

efficient procedures were developed for parameters 

calibration, for example, sensitivity-based hierarchical and 

sequential single-parameter optimization [11] and active 

set optimization (ASO) procedure [9]. Proper 

determination of model parameters is of highest importance 

for efficient prediction of the AD performance. 

Furthermore, it is known that only a reliable mathematical 

model can be incorporated into an optimization problem to 

improve the AD process. For AD process optimization, 

various stochastic and deterministic optimization 

algorithms can be used. However, a direct gradient-based 

optimization, which may prove to deliver excellent and fast 

results on certain types of problems, is rarely engaged for 

the AD process optimization. Moreover, the efficiency of 

the ASO procedure, coupled with a gradient-based 

algorithm, is still not verified in a batch bioreactor. 

To fill this gap, this paper deals with the modelling and 

optimization of the AD process in a batch-mode lab-scale 

bioreactor filled with animal manure. Special attention is 

focused on the determination of BioModel parameters by 

ASO procedure and on the usefulness of a gradient-based 

optimization algorithm for BioModel calibration and AD 

process optimization. 
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2. Materials and methods 
 

At first, experimental data of the observed AD process are 

given. Then, the gradient-based optimization algorithm and 

statistical evaluation methodology are presented briefly. 

 

A. Experimental data 

The AD process, utilizing data of various animal manure in 

a batch-mode lab-scale bioreactors, was observed. Three 

separate studies of the AD process on separate bioreactors 

are performed for BioModel calibration and validation. In 

all studies, the experimental input data are taken from the 

literature, Table I. The experimental data for AD of cattle 

manure [8],[12] was used for BioModel calibration (Cal), 

while the experimental data for BioModel validation was 

taken from [13] (buffalo manure, Val 1) and [14] (cow 

manure, Val 2). Fig. 1 shows the measured AD 

performance used for BioModel calibration and BioModel 

validation.  
 

Table I. Input data for BioModel calibration and validation 
Parameter Cal Val 1 Val 2 

Initial insoluble substrate concentration, 𝑐is (gL−1) 30.4 30.4 30.4 

Initial soluble substrate concentration, 𝑐s (gL−1) 5.4 5.4 5.4 

Initial total acetate concentration, 𝑐ac (gL−1) 4.5 4.5 4.5 

Initial total propionate concentration, 𝑐pro (gL−1) 2.3 2.3 2.3 

Initial total butyrate concentration,  𝑐bu (gL−1) 0.05 0.05 0.05 

Initial total ammonia concentration,  𝑐am (gL−1) 2.0 2.0 2.0 

Liquid volume of bioreactor, 𝑉liq(L) 1.0 2.0 0.25 

Gas volume of bioreactor, 𝑉g (L) 0.1 0.2 0.01 

Total pressure in bioreactor, 𝑝total(bar) 1.006 1.073 1.073 

pH value, pH (/) 8.0 7.4 7.6 

Temperature, 𝑇 (℃) 35.0 38.5 37.0 

 

 
Fig. 1. Measured AD performance, BioModel calibration and 

validations 
 

In case of BioModel calibration and Val 1, a comparison is 

made with respect to the CH4 flow rate. Meanwhile, for 

Val 2 the relative cumulative biogas yield (mL of the 

produced biogas per g of volatile solid (VS)) was taken into 

account. The usage of various lab-scale bioreactors and 

various input data for BioModel calibration and validation 

was chosen on purpose. The intent was to demonstrate the 

wide applicability and robustness of both, the presented 

ASO procedure and the calibrated BioModel. 

 

B. Gradient-based optimization algorithm with adaptive 

approximation scheme 

The optimal design problem [14] can be verbally expressed 

as follows: find such values of design variables 𝑥𝑖 , that 

while satisfying the constraints 𝑔𝑗, the value of objective 

function 𝑔0 is minimized. The used optimization algorithm 

is based on an approximation method [15], which 

sequentially generates approximate, strictly convex, and 

separable optimization sub-problems and solves them to 

generate a sequence of converging approximate solutions. 

The algorithm uses the history of design derivatives of the 

objective and constraint functions to gradually improve the 

quality of the approximation; the design derivatives were 

obtained numerically by using forward differences. This 

optimal design problem was engaged for BioModel 

calibration in the proposed ASO procedure as well as for 

the AD process optimization. 

 

C. Statistical evaluation methodology 

For the evaluation of the proposed BioModel, the measured 

AD performance is compared by NS using four statistical 

indicators (SI): (i) mean absolute error, 𝜀MAE, (ii) root mean 

square error, 𝜀RMSE, (iii) coefficient of determination, 𝑅2, 

and (iv) the relative index of agreement, 𝐼A,rel [10]. 

 

3. AD process optimization 
 

Since the efficiency of the AD process optimization 

depends on the reliability of the mathematical model for NS 

of the AD process, the BioModel was previously calibrated 

and validated.  

 

A. BioModel 

To simulate the AD process in a batch-mode bioreactor, the 

BioModel proposed in [8] was used. The main equations of 

this BioModel are based on continuity equations. In general 

form, the mass balance equations for concentration of 𝑖th 

component in the liquid phase, 𝑐liq,𝑖 , 𝑖 ∈ 𝑁liq are given by 

Eq. (1), while Eq. (2) is used to calculate 𝑗th biogas 

component in the gas phase, 𝑐gas,𝑗 ,  𝑗 ∈ 𝑁gas. 

𝑑𝑐liq,𝑖

𝑑𝑡
= 𝜌bc,𝑖 − 𝜌l−g,𝑖 , 𝑖 ∈ 𝑁liq     (1) 

𝑑𝑐gas,𝑗

𝑑𝑡
=

𝑉liq

𝑉gas
 𝜌l−g,𝑗 −

                
𝑅 𝑇 𝑉liq

(𝑝total−𝑝𝑤) 𝑉gas
 ∑

1

𝑀𝑗
𝜌l−g,𝑗𝑗∈𝑁gas

 𝑐gas,𝑗 ,   𝑗 ∈ 𝑁gas     (2) 

where 𝜌bc,𝑖(gL−1day−1) and 𝜌l−g,𝑖(gL−1day−1) denote the 

kinetic rates of biochemical and liquid to gas mass transfer 

processes for 𝑖th component, respectively. The symbols 

𝑉liq(L) and 𝑉gas(L) represent the liquid and gas volumes of 

the bioreactor, 𝑝total(atm) and 𝑝𝑤(atm) are total pressure in 

bioreactor and saturated vapor pressure, 𝑅(atmLmol−1K−1) 

is the gas constant, 𝑇(K) is the temperature, 𝑀𝑗(gmol−1) and 

𝑐gas,𝑗  (gL−1) are the molar mass and concentration of 𝑗th gas 

component. 

The BioModel includes pH- and temperature-dependent 

parameters, involved into biochemical and 

physicochemical reactions. Furthermore, in all microbial 

steps, a non-competitive type of inhibition is used. 

The unknown or hard-to-determine parameters in this 

BioModel are: 

 4 hydrolysis parameters, related to: hydrolysis efficiency 

𝑦c, hydrolysis stoichiometric constants 𝑛hyd and 𝑚hyd, and 

hydrolysis rate constant 𝑘hyd 

 4 inhibition parameters, related to: volatile fatty acids 

(VFA) inhibition of hydrolysis step 𝐾I,VFA, acetate 

inhibition of the acetogenic step by propionate 𝐾I,pro and 

by butyrate 𝐾I,bu, and ammonia inhibition of the 

methanogenic step 𝐾I,am 
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 4 Monod saturation constants, related to: Monod 

saturation constant of soluble substrate 𝐾M,s, propionate 

𝐾M,pro, butyrate 𝐾M,bu, and ammonia 𝐾M,am 

 32 bacteria factors, related to: maximum specific growth 

rate at optimal temperature of each type of bacteria, 

𝜇𝑖,max,𝑇opt
, decay coefficients of each bacteria type, 𝑏dec,𝑖, 

lower and upper pH drop-off value, pK𝑖
lo, pK𝑖

up
, 

temperature coefficient for each bacteria type, α𝑖, optimal 

and maximal temperature for growth of each bacteria 

type, 𝑇opt,𝑖, 𝑇max,𝑖, and the initial concentration of each 

bacteria type in the substrate, 𝑋𝑖,𝑖 ∈ 𝐼bac = {A, AP, AB, M} 

 4 liquid-gas mass transfer coefficients, related to: CO2 

liquid-gas mass transfer coefficients (𝐾L𝑎)CO2,a, 

(𝐾L𝑎)CO2,b and CH4 liquid-gas mass transfer coefficients 

(𝐾L𝑎)CH4,a, (𝐾L𝑎)CH4,b. 

These 48 parameters of BioModel were calibrated by ASO 

procedure with respect to the experimental data. 

 

B. Sensitivity analysis 

At first, a set 𝑆𝐱 of random AD model designs 𝐱𝑗 , 𝑗 = 1, … 𝑁𝑆 

(each design 𝐱𝑗  is a complete set of design parameters) is 

generated. Then, the derivatives of the objective function, 
𝜕𝑔0

𝜕𝑥𝑖
, for each design 𝐱𝑗  from the set 𝑆𝐱, are calculated. The 

objective function 𝑔0 is defined by Eq. (3). 

𝑔0 = ∫ (
𝑄CH4

(𝑡)−𝑄CH4exp(𝑡)

�̅�CH4,exp
)

2

𝑑𝑡
𝑡total

0
     (3) 

where 𝑡total is the total time of the observed AD process, 

𝑄CH4
(𝑡), 𝑄CH4exp(𝑡), and �̅�CH4,exp represent time dependent 

simulated and measured CH4 flow rates and average value 

of the measured CH4 flow rate. After the normalization of 

the obtained sensitivity results, the importance factor, 𝑓IM,𝑖 

of each design parameter 𝑥𝑖, is calculated. 

 

C. BioModel calibration 

The solution of this optimal design problem represents the 

calibrated values of model  parameters; these are obtained 

by minimizing the daily differences between simulated and 

measured values of CH4 flow rates during the total time of 

the observed AD process, 𝑡total, Eq. (3). 

The imposed constraints are related to the sum of 

concentrations of all considered bacteria types, to the 

allowed interval between simulated and measured values of 

𝑄CH4
 during the total duration of the AD process, and to the 

total volume of the produced CH4. In order to prevent that 

the optimizer would rise the concentrations of bacteria 

beyond realistic values, a constraint function 𝑔1, is related 

to maximal allowed bacteria concentration  in the substrate, 

Eq. (4). For stability reasons, the quantity 𝑄CH4
 is required 

to be within the interval [𝑘𝑄CH4  
LO 𝑄CH4,exp , 𝑘𝑄CH4  

UP 𝑄CH4,exp ] for 

any 𝑡 ∈ [0, 𝑡total]; the factors 𝑘𝑄CH4  
LO < 1 and 𝑘𝑄CH4  

UP > 1 define 

the width of the allowed interval for the 𝑖th performance 

quantity 𝑄CH4,exp. To fulfill this requirement, the lower limit 

of quantity 𝑄CH4
 is constrained by Eq. (5) while Eq. (6) 

constrains the upper limit of 𝑄CH4
. Note that the inverse 

tangent function in these constraints was used as a 

differentiable substitute for the conventional step function; 

this is necessary to preserve the differentiability of the 

involved functions, which is a requirement if a gradient-

based optimizer will be engaged. By Eq. (7) the maximal 

difference between measured and calculated total volume 

of the produced CH4 is constrained. 

𝑔1 =
∑ 𝑥𝑖𝑖 −𝑥bac

max

𝑥bac
ma𝑥  , 𝑖 ∈ 𝐼bac     (4) 

𝑔2 =
∫ (0.5+tan−1(

10 𝜏LO

�̅�CH4,exp
) 𝜏LO)𝑑𝑡

𝑡total
0

𝑡total  �̅�CH4,exp
   (5) 

𝑔3 =
∫ (0.5+tan−1(

10 𝜏UP

�̅�CH4,exp
) 𝜏UP)𝑑𝑡

𝑡total
0

𝑡total  �̅�CH4,exp
   (6) 

𝑔4 = ⌈𝑉CH4,exp − 𝑉CH4
⌉ − ∆𝑉CH4,max   (7) 

where 𝑥bac
max(gL−1) represents the maximal allowed bacteria 

concentration, 𝑄CH4,exp(Lday−1) and 𝑄CH4
(Lday−1) are 

measured and predicted CH4 flow rates, �̅�CH4,exp(Lday−1) 

denotes the average value of the measured CH4 flow rates, 

𝜏LO = 𝑘𝑄CH4 
LO 𝑄CH4,exp − 𝑄CH4

, 𝜏UP = 𝑄CH4
− 𝑘𝑄CH4  

UP 𝑄CH4,exp, 

𝑘𝑄CH4 
LO (/) and 𝑘𝑄CH4  

UP (/) are factors which define lower and 

upper limits of interval, 𝑉CH4,exp(L) and 𝑉CH4
(L) are 

measured and calculated total volume of the produced CH4. 

All constraints, Eqs. (4)-(7), are imposed in the standard 

form 𝑔𝑖 ≤ 0, 𝑖 = 1 … 4. Our BioModel represents the 

response equation in the optimal design problem. All of the 

48 BioModel parameters are chosen as design variables. 

 

D. ASO procedure 

The ASO procedure [9] incorporates the used BioModel, a 

sensitivity analysis and a gradient-based optimization 

algorithm in order to calibrate the BioModel parameters. 

The initial values of the all design variables are the 

recommended values from the available literature. The 

calibration of all BioModel parameters is performed in 

several cycles. At the beginning of the first cycle, some 

initial and a relatively high activation threshold value 𝑓𝑇 

was chosen to determine a relatively low number of active 

design parameters. Within each cycle, the active design 

variables 𝑥𝑖
∗ are determined for which it holds 𝑓IM,𝑖 ≥ 𝑓𝑇; all 

other design variables are designated as passive in the 

current cycle. The values of active design parameters are 

optimized while keeping the passive ones constant at their 

recommended values. After that a new cycle with a lower 

value of 𝑓𝑇 is started until all design variables are active and 

calibrated by the optimization process. 

 

E. AD process optimization 

The selected design variables in the AD process are related 

to the biological additive, represented by four bacteria 

groups (𝑋𝑖,add, 𝑖 ∈ 𝐼bac) and to the AD process conditions, 

such as temperature and pH value. With respect to the 

chosen design variables, three modes of the AD process 

optimization are considered. 

Mode 1. Temperature and pH value are assumed constant 

during the AD process. 

Mode 2. Temperature and pH value are defined by using 

piecewise linear function; 5 non-uniform segments are 

used [8].  

Mode 3. Temperature and pH value are defined by 5th order 

Bezier function; the control points’ locations are uniformly 

distributed along the process time interval [8]. 

In all modes, the initial concentrations of added 4 bacteria 

groups were included as design variables. So, in Mode 1 the 
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values of 6 design variables have to be optimized, while in 

Modes 2 and 3, we have 18 design variables. 

Related to the definition of the objective and constraint 

functions, two cases were considered. 

Case A. Objective function is defined as a negative time-

integrated biogas volume produced, Eq. (8) 

𝑔0 = −
1

𝜓𝐴
∫ 𝑉biogas(𝑡) 𝑑𝑡

𝑡total

0
    (8) 

where 𝜓A is a normalization constant. The minimization of 

this objective function, Eq. (8), maximizes the total biogas 

volume. 

Besides the upper and lower limits of the design variables, 

an additional constraint was related to the allowed maximal 

initial concentration of all bacteria (present in the influent 

substrate and added as biological additive), Eq. (9). 

𝑔1 =
∑ (𝑋𝑖+𝑋𝑖,add)𝑖∈𝐼bac

−𝑋max

𝑋max
              (9) 

Case B. The objective function is a sum of two quantities: 

negative produced biogas and positive heating cost, 

multiplied by adequate weighting factors, Eq. (10) 

𝑔0 = −
𝜑B,1

𝜓B,1
∫ 𝑉biogas(𝑡)

𝑡total

0
𝑑𝑡 +

𝜑B,2

𝜓B,2
∫ (𝑇 − 𝑇ref)𝑑𝑡

𝑡total

0
 (10) 

where 𝜑B,1 and 𝜑B,2 are weighting factors, 𝜓𝐵,1 and 𝜓B,2 are 

normalization constants, 𝑇 ≥ 𝑇ref is the enforced design-

dependent bioreactor temperature, and 𝑇ref is a reference 

temperature, that would be present in the bioreactor without 

heating. 

Besides the upper and lower limitation of the design 

variables and the allowed maximal concentration of the 

maximal initial concentration of all bacteria, Eq. (9), the 

additional constraints are related to the CH4 content in the 

produced biogas by Eqs. (11)-(12). 

𝑔2 =
𝑉CH4

𝑉biogas
− 𝜑CH4,max (11) 

𝑔3 = 𝜑CH4,min −
𝑉CH4

𝑉biogas
 (12) 

where 𝜑CH4,max and 𝜑CH4,min denote maximal and minimal 

fraction of CH4 in the produced biogas. 

 

4. AD process optimization 
 

The BioModel, the ASO procedure and the whole 

optimization procedure were coded in-house in the C# 

language. The system of ODEs was solved by the Euler 

method. To improve numerical performance, the 

computation of design derivatives was parallelized. In this 

scenario, one full optimization cycle for BioModel 

calibration (48 design variables being active) took about 

3 seconds and for AD process conditions optimization 

about 1 second on an 8-core i7 CPU desktop computer. The 

number of optimization cycles, needed to obtain optimum 

model and process parameters, ranged usually around 200. 

At first, the results of the AD process modeling are 

presented, followed by the results of the AD process 

optimization. 

 

A. AD process modeling 

At first, the results of sensitivity analysis are presented, 

followed by the results of BioModel calibration and 

validation. 

Sensitivity analysis. The most important model parameters 

are: ammonia inhibition constant, 𝐾I,am, maximal 

methanogenic bacteria growth rate at optimal temperature, 

𝜇M,max,𝑇opt
, hydrolysis stoichiometric constant, 𝑛hyd, 

hydrolysis efficiency, 𝑦c, initial concentration of 

methanogenic bacteria, 𝑋M, Monod saturation constant of 

soluble organic matter, 𝐾M,s, factor of methanogenic 

bacteria decay 𝑏dec,M, hydrolysis stoichiometric constant, 

𝑚hyd, upper pH drop-off value for methanogenic bacteria, 

pKM
up

, and maximal acidogenic bacteria growth rate at 

optimal temperature, 𝜇A,max,𝑇opt
. 

BioModel calibration. The optimal values of design 

parameters, 𝑥𝑖 , 𝑖 = 1 … 𝑁𝑥 are given in Table II. 
 

Table II. Optimal values of design parameters. 

𝑖 Parameter 
Optimal 

value 
𝑖 Parameter 

Optimal 

value 

1 𝑋Asu (gL-1) 0.29131 25 𝐾i,H2S,Ava (gL-1) 0.47697 

2 𝑋Aaa (gL-1) 0.29092 26 𝐾i,H2S,Mac (gL-1) 0.50035 

3 𝑋Agly (gL-1) 0.29108 27 𝐾i,H2S,Mhyd (gL-1) 0.46746 

4 𝑋Aoa (gL-1) 0.29144 28 𝐾i,H2S,S𝑠 (gL-1) 0.48012 

5 𝑋Apro (gL-1) 0.30138 29 𝐾i,H2S,Spro (gL-1) 0.48043 

6 𝑋Abu (gL-1) 0.30078 30 𝐾i,H2S,Sac (gL-1) 0.48051 

7 𝑋Ava (gL-1) 0.29793 31 𝐾i,H2S,Shyd (gL-1) 0.48081 

8 𝑋Mac (gL-1) 0.30778 32 𝐾i,NH3,Mac (gL-1) 0.22095 

9 𝑋Mhyd (gL-1) 0.10299 33 𝐾i,Cu2+,Abu (gL-1) 0.48041 

10 𝑋Spro (gL-1) 0.28040 34 𝐾i,Zn2+,Abu (gL-1) 0.48038 

11 𝑋Sac (gL-1) 0.29094 35 𝐾i,Cr2+,Abu (gL-1) 0.48008 

12 𝑋Ss (gL-1) 0.29112 36 𝐾i,Pb2+,Abu (gL-1) 0.48041 

13 𝑋Shyd (gL-1) 0.28475 37 𝐾i,Ni2+,Abu (gL-1) 0.48041 

14 𝑘hyd,ch (day-1) 5.44266 38 𝐾i,Cu2+,Mac (gL-1) 0.48044 

15 𝑘hyd,pr (day-1) 4.95942 39 𝐾i,Zn2+,Mac (gL-1) 0.48052 

16 𝑘hyd,li (day-1) 5.01598 40 𝐾i,Cr2+,Mac (gL-1) 0.47892 

17 𝐾i,VFA (gL-1) 0.22880 41 𝐾i,Pb2+,Mac (gL-1) 0.48042 

18 𝐾i,H2,Agly (gL-1) 0.05280 42 𝐾i,Ni2+,Mac (gL-1) 0.48042 

19 𝐾i,H2,Aoa (gL-1) 0.05280 43 𝐾M,Nio
 (gL-1) 0.00528 

20 𝐾i,H2,Apro (gL-1) 0.05284 44 𝐾M,Pio
 (gL-1) 0.00527 

21 𝐾i,H2,Abu (gL-1) 0.05280 45 𝑘M,suAsu (gL-1) 0.47809 

22 𝐾i,H2,Ava (gL-1) 0.05279 46 𝑘M,aaAaa (gL-1) 0.47919 

23 𝐾i,H2S,Apro (gL-1) 0.48386 47 𝑘M,glyAgly (gL-1) 0.47978 

24 𝐾i,H2S,Abu (gL-1) 0.47729 48 𝑘M,oaAoa (gL-1) 0.47888 

 

By using the proposed ASO procedure, various sets of 

active design variables are generated with respect to the 

prescribed threshold, 𝑓T. By decreasing 𝑓T from 0.2 t 0.0, the 

number of active design variables increases gradually from 

9 to 48; by including more design variables, the values of 

the objective function decrease monotonically. 

The CH4 flow rates, obtained by NS with the initial and 

various optimal values of design parameters (computed 

with active Sets from 1 to 5, Set 5 represents the optimal 

design), are compared to the measured data in Fig. 5. The 

average values of CH4 flow rate, obtained with initial values 

of design parameters, differs from the averaged measured 

values approximately by 54.5% (average absolute daily 

difference divided by average daily measurement). By far 

the largest improvement of this result (difference lower 

than 1%) is reached by optimizing the active design 

variables of Set 1. Further optimization of the Sets 2 to 5 

gradually also improves the result but the improvements are 

becoming progressively small. It is clearly evident that the 

dynamics of the CH4 flow rate obtained with optimal values 

of all 48 design parameters, presented in Fig. 5 is the closest 

to the dynamics of the measured CH4 flow rate. The average 

difference is approximately less than 1%; therefore, the 

calculated CH4 flow rates agrees very well with the 

measured values. 
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Fig. 5. Time evolution of CH4 flow rate, model calibration. 

 

SI are given in Table III. It can be seen that by including 

more design variables, all SI show better agreement 

between the simulated and experimentally obtained 𝑄CH4
; 

namely, the indicators 𝜀MAE (Lday−1) and 𝜀RMSE (Lday−1) 

decrease, while the indicators 𝑅2 (/) and 𝐼A,rel (/) increase. 

According to the presented results, one can say that the 

optimization of the most important parameters (Set 2) 

yields relatively good results. For the fine tuning, however, 

the activation of all design parameters (Set 5, optimal 

design) may be worth a consideration. 
 

Table III. SI for 𝑄CH4
, BioModel calibration. 

SI 
Initial 
design 

Optimal design – ASO procedure 

Set 1 Set 2 Set 3 Set 4 Optimal 

𝜀MAE 0.2875 0.0632 0.0196 0.0176 0.0174 0.0180 

𝜀RMSE 0.3411 0.0794 0.0297 0.0289 0.0265 0.0245 

𝑅2 0.5218 0.8915 0.9848 0.9879 0.9889 0.9901 

𝐼A,rel 0.6771 0.9705 0.9961 0.9962 0.9962 0.9974 

 

BioModel validation. The validation of the calibrated 

BioModel was done by using a separate set of measured 

data [13],[14]. The agreement between the calculated and 

measured CH4 flow rates is given in Fig. 6a. The calculated 

CH4 flow rates agrees very well with the measured data 

through the whole interval of the AD process observation. 

However, the calculated average CH4 flow rates, differ on 

measured average values by around 8%. The agreement 

between calculated and measured relative cumulative 

biogas yields is given in Fig. 6b. The simulated AD 

performance agrees very well with the measured data 

through the whole interval of the AD process observation; 

differences are less than 10%. 
 

 
Fig. 6. AD performance using calibrated BioModel: (a) Val 1, 

(b) Val 2. 
 

All calculated SI as well as good agreement of the AD 

performance in various bioreactors under various 

conditions confirm the reliability of the calibrated 

BioModel. Furthermore, it confirms also the wide 

applicability of the ASO procedure. Therefore, this 

BioModel can be incorporated into the AD process 

optimization procedure. 

B. AD process optimization 

The BioModel with calibrated values of model parameters 

is used for further AD process optimization. The optimized 

values of design variables are presented in Figs. 7-8. Fig. 7 

shows the initial concentration of bacteria (initial design; 

the concentration of bacteria presents in animal manure) 

and the concentration of the added bacteria (optimal 

design). The total initial bacteria concentration (bacteria 

present in substrate + added bacteria) of all bacteria is 

limited by the maximal value of 𝑋max = 2 gL−1.  
 

 
Fig. 7. Bacteria in substrate and added bacteria. 

 

The added amount of the bacteria in optimal designs of 

Mode 1 is smaller than in other two modes; in Mode 1, 

Case B there is actually no added bacteria. In optimal 

designs of Mode 2 and 3, in Case A, over 50% of added 

bacteria belongs to methanogenic bacteria, around 35% to 

the acidogenic bacteria, and the rest to the acetogenic 

bacteria. In Case B, the methanogenic bacteria represent 

over 60% and acidogenic bacteria around 27%. 

Time evolution of pH values and temperature is presented 

in Fig. 8 for initial and optimal designs. In order to 

maximize biogas production (Case A) in all modes, optimal 

conditions are reached at pH value lower than 7.3, Fig. 8. 

In Case B, Mode 2 and Mode 3, the pH value increases 

from 7.0 to 7.8 during the AD process; after main biogas 

production, the pH value approaches to the optimized pH 

value at Mode 1, where the constant pH value is 

considered. As it is evident from Fig. 8, in order to 

maximize biogas production (Case A) in all modes, the 

optimal values of temperature is around 55 ℃. In Case B in 

Mode 2 and Mode 3, the temperature decreases during the 

AD process from 55 ℃ to 25 ℃, which is the optimal 

temperature in Mode 1, Case B. 
 

 
Fig. 8. Time evolution of pH values and temperature. 

 

The AD performance of various optimal designs, compared 

to those obtained by NS using BioModel and experiment of 

the initial design, are given in Fig. 9. 
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Fig. 9. Time evolution of produced CH4. 

 

It can be seen that for all modes, Case A enables higher CH4 

production than Case B. The main reason lies in the higher 

optimized values of temperature in Case A, which is 

obtained during optimization without minimization of 

heating-related cost and without requirements of higher 

content of CH4 in the produced biogas. This high 

temperature, Fig. 8, is the main reason to increase the 

produced biogas (Case A) and this is in the accordance with 

the fact, that thermophilic temperature can enable higher 

biogas production [8],[16]. In Case B, where the heating 

cost is included into the objective function, the low optimal 

values of temperature and consequently lower produced 

biogas are reached, but the content of CH4 in biogas is 

higher. Another observation that can be made is that the 

possibility to adjust the temperature and pH histories can 

contribute to improve the results. Namely, it is obvious that 

variable temperature and pH histories enable high CH4 

production at relatively low heating costs. Both, Mode 2 

and Mode 3, deliver good results in term of biogas 

production, but the optimal piecewise linear function 

exhibits sharp variations with large gradients and might be 

difficult to enforce in practice. From this point of view, it 

seems that the best optimal design is obtained using the 

Bezier time dependent function and by the multiple 

objectives related to the maximization of the biogas 

production and minimization of heating-related cost. 
 

5. Conclusions 
 

The obtained results of modeling and optimization of the 

AD process in a batch-mode lab-scale bioreactor confirm 

the reliability of the used BioModel and the efficiency of 

the proposed ASO procedure for parameters calibration; all 

values of the SI are satisfactory. Furthermore, the engaged 

gradient-based optimization algorithm with adaptive 

approximation scheme proved to be computationally 

efficient for BioModel calibration and for AD process 

optimization. The highest CH4 production at relatively low 

heating costs is achieved by variable temperature in pH 

histories, which follow the Bezier time dependent 

functions, and by the definition of multi-objective function 

including the maximization of the biogas production and 

minimization of heating-related cost. 
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