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Abstract. The emerging technology of smart grids relies 

heavily on monitoring the distribution networks for disturbances 

using, for example, the devices installed for measuring power 

quality signals. Obviously, efficient compression of these 

electrical signals is of paramount importance to allow fast 

transmission, remote analysis and automation of response to 

disturbances, as well as archival storage. While prior approaches 

to compress electrical signal disturbances employed standard 

effective components such as wavelet transforms, non-uniform 

quantizers, and entropy coding, the overall system design was 

largely ad-hoc in the sense that it did not directly account for or 

adapt to data statistics. Instead, we propose to jointly design all 

system modules, including transforms, quantizers and entropy 

coders, within a genetic algorithm-based optimization framework, 

while accounting for the variation in statistics across different 

disturbances, within a two-step “classify then compress” 

procedure. Specifically, we jointly design the family of wavelets 

to be employed, the non-uniform quantizer structure, and 

probability tables for the entropy coder, to optimize the rate-

distortion trade-off. Experimental results for 8 classes of 

commonly occurring power quality disturbances, which were 

synthetically generated to ensure rich and comprehensive training 

and test sets, validate the effectiveness of the proposed approach 

with significant performance gains over prior techniques. 

 

Keywords: Data Compression, Evolutionary 

Computation, Power Quality, Wavelet Transforms. 

 

1. Introduction 

 
Signal processing techniques have become indispensable in 

addressing various challenges encountered in electric 

power systems (EPS) [1] [2], especially with the emerging 

technology of smart grids (SG) [3] [4] [5]. These 

technological advancements require continuous monitoring 

of the EPS by devices measuring power quality (PQ) 

signals, which means its effectiveness is critically 

dependent on efficient compression and transmission of 

measured signals. However, while various compression 

approaches for PQ signals have been investigated [6] [7], 

PQ compression has not reached the maturity of speech, 

image or video compression [8] [9]. Hence, effective 

collaboration between researchers in the respective fields 

of signal compression and EPS is required to provide the 

compression technology support for proliferation of smart 

grids, and this paper covers the preliminary work and 

results for one such foray. 

 

Current approaches for compression of PQ disturbance 

signals [10] [11] [12] [13] employ tools that are well known 

to be effective in other coding frameworks. The tools 

employed include: i) wavelet transforms (WT), to take 

advantage of its ability to decompose the signals into time-

frequency bins of varying resolutions; ii) non-uniform 

quantizers, to control the amount of discarded information; 

and iii) entropy coding, for lossless compression of 

quantized transform coefficients. The premise of this paper 

is that, while each of these modules is a highly effective 

compression tool in its own right, the full benefits will only 

be recouped if they are jointly optimized within a 

framework for PQ signal compression. We note, for 

example, that the Daubechies wavelet family is employed 

in most prior approaches, but it is unclear whether this 

choice represents a good match to PQ signals. Furthermore, 

the quantization approach is ad hoc with no justification for 

how the threshold for discarding coefficients (quantizing to 

zero) was selected. 

 

Clearly, the true potential of these tools and the overall 

framework can only be achieved by joint optimization of 

the modules including, in particular, the wavelet family, 

quantizer intervals, and probability tables for entropy 

coding, for the actual statistics of the data. 

 

In this paper, given the complexity of the cost function that 

controls the tradeoff between the conflicting objectives of 

rate (or compression ratio) and distortion, and optimizes 

numerous parameters, we employ a generic but powerful 

multi-objective genetic algorithm based optimization 

approach called the Non-dominated Sorting Genetic 

Algorithm (NSGA-II) [14]. The optimization is done 

separately for 8 classes of commonly occurring PQ 

disturbance signals, namely, flicker, harmonic distortion, 

impulse transient, notching, oscillatory transient, voltage 

interruption, voltage sag and voltage swell. Prior to 

compression, the signals are segmented as per [15] and 
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classified as per [16], to learn parameters that are adaptive 

to the statistics of each type of disturbance. Wavelets from 

the families of Haar, Daubechies, Symlets, Coiflets and 

Biorthogonal are considered. Given the wavelets, the 

coefficients after decomposition are modeled by the 

Laplacian distribution, which has been observed in 

experiments to be an effective model (Laplacians are also 

commonly used in multimedia signal compression [17] 

[18]. Parameters are estimated for the “dead-zone plus 

uniform threshold” quantizer with nearly uniform 

reconstruction, which is optimal for the Laplacian 

distribution [19]. The quantizer parameters include the 

dead-zone interval width, width of the uniform intervals, 

and reconstruction offset within uniform intervals. Given 

the quantizer, the actual quantizer index statistics are used 

to learn the probability tables for entropy coding. 

 

An initial population of 100 individuals are formed for the 

NSGA-II by randomly sampling the entire parameter space. 

The NSGA-II traverses the parameter search space based 

on individuals' fitness (or cost function) with respect to the 

objectives of compression ratio and distortion 

simultaneously. After certain number of generations, the 

NSGA-II converges to the most adapted wavelets for 

decomposition and the most appropriate parameters for 

quantization and entropy coding according to their 

compression ratio and distortion. 

 

This paper is organized as follows: Section 2 covers the 

background of currently employed compression framework 

for PQ disturbance signals. Section 3 details our proposed 

methodology to jointly design all the parameters of the 

compression framework; Section 4 describes results 

obtained by our proposed approach; Finally, Section 5 

presents conclusions of the presented research. 

 

2. PQ Signal Compression Framework 
 

The commonly employed basic framework for electric 

signals compression, depicted in Figure 1, includes three 

stages: i) transformation of the input signal to decorrelate 

coefficients in the transform domain; ii) quantization of the 

coefficients; and iii) entropy coding [7] [10] [11] [12] [13]. 

 

A WT is usually employed to generate the time-frequency 

representation coefficients. This transformation is 

performed by decomposing the signal into low and high 

frequency components, followed by temporal decimation 

by 2. This decomposition is repeated recursively until the 

desired frequency and time resolution is achieved. Note that 

in each stage of decomposition, while the time resolution is 

decreased, the frequency resolution is correspondingly 

increased. This allows separating the frequency 

components introduced by a particular disturbance from 

those that are not related. These unrelated components can 

be then discarded by quantizing to zero without loss of 

quality during signal reconstruction, resulting in better 

compression [13]. Finally, all the quantized coefficients are 

losslessly entropy coded. 

 

 
Figure 1: Current PQ signal compression framework. 

 

3. Joint Design of Updated PQ Signal 

Compression Modules 
 

As explained in Section 1, while the modules of the 

standard PQ compression framework can be very effective, 

their design choices were either arbitrary or unjustified. We 

thus propose updating the modules to account for variation 

in statistics of the data, and then propose a joint design 

approach of these modules. 

 

A. Adaptive Modules 

 

One key aspect that had largely been neglected by prior 

approaches is that statistics of different types of PQ 

disturbances can vary significantly. For example, the 

harmonic disturbance has components only at multiples of 

the fundamental frequency, but a transient disturbance has 

components spread across many more frequencies. Thus, in 

a significant departure from prior approaches, we propose 

employing modules that are designed specifically for each 

class of disturbance based on its statistics. In doing this, we 

are exploiting the fact that analysis of PQ signals requires 

segmentation and classification based on disturbances. This 

novel framework with classification preceding 

compression is practically feasible with availability of 

online segmentation [15] and classification [16] techniques 

that are tailored to these signals. 

 

B. Entropy Constrained Scalar Quantizers 

 

Another major shortcoming of current approaches is the ad 

hoc approach for quantization, where frequency 

coefficients are zeroed out based on an arbitrarily chosen 

threshold. Instead we propose to employ the right entropy 

constrained scalar quantizers (ECSQ), based on the 

empirically collected distributions of data for different 

disturbances. Figure 2 shows these distributions whose 

shapes are reasonably well modeled by the Laplacian 

distribution. Hence, we employ the dead-zone plus uniform 

threshold quantizer with nearly uniform reconstruction, 

which is the optimal ECSQ for Laplacian distributed data 

[9]. This quantizer is illustrated in Figure 4, and its structure 

is characterized by the dead zone width, width of uniform 

intervals, and the reconstruction offset in the uniform 

intervals. While it can be argued that the ``zeroing out 

threshold'' currently employed can capture the dead zone 

width, optimality will only be achieved once it is designed 

in conjunction with width of other intervals and offset for 

reconstruction in them. The other interesting observation in 

Figure 2 is the variation in statistics across disturbances, 

validating the proposed adaptation in Section A.
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Figure 2: Empirical distribution for different disturbances. 

 

 
Figure 4: Dead-zone plus uniform threshold quantizer for 

Laplacian distribution. 

 

 

C. Joint Design of Modules Using Genetic Algorithm 

 

The final hurdle to realize the true potential of these tools 

and the overall framework is to jointly optimize all 

parameters of the system, including the wavelet family, 

Laplacian quantizer parameters, and probability tables for 

entropy coding, to match the actual data statistics. The 

objective is to find an approximation �̂� of the PQ signal of 

interest 𝒇, encoded with b bits, that minimizes the distortion 

d(𝒇, �̂�). In this paper we employ the normalized mean 

squared error (NMSE) distortion metric as defined in [20].  

 

Given the complexity of the cost function with two 

conflicting objectives of rate (or compression ratio) and 

distortion, and the variety of parameters, we employ a 

generic multi-objective genetic algorithm based 

optimization approach called NSGA-II [14]. Figure 3(a) 

and Figure 3(b) show all stages of the NSGA-II algorithm 

to determine the Pareto front [14], which represents the 

convex hull of the operational rate-distortion (RD) curve, 

for each one of the disturbance categories.  

 

During the “Initialize population” stage of the algorithm, N 

individuals are randomly selected from the entire parameter 

space. In “Fitness functions evaluation” stage, for each 

individual, all the training set samples go through the full 

compression and decompression steps using the parameters 

associated with that individual to determine the fitness, i.e., 

the cost functions of compression ratio and distortion, as 

presented in Figure 3(b). The first step is wavelet 

decomposition of PQ signals. This is followed by 

quantization of frequency coefficients. Given the quantized  

 

coefficients, an entropy coding dictionary is generated 

using the actual probability distribution. This dictionary is 

used in entropy coding, which completes the encoding 

process to generate the bitstream. Given the bitstream, we 

calculate the compression ratio. The bitstream is then 

decoded by reversing the encoding steps to generate 

reconstructed PQ signals, given which we calculate the 

distortion. 

 

In “Ranking population” stage, the NSGA-II employs non-

dominated sorting. Domination is defined as all objectives 

being not worse than that of the competing individual and 

at least one objective being strictly better.  

 

Given this all individuals that are not dominated by others 

are ranked as front 1. For our problem, this is picking 

individuals on the RD plane that lie on the bottom-left edge 

and connect the bottom most and left most point. All 

individuals only dominated by those from front 1 are 

ranked front 2, and so on [21]. In the “Selection” stage, 

parents who will be used to generate new offspring are 

chosen using tournament between two randomly selected 

individuals from the current population. The tournament 

winner is based on the front number, and if from same front, 

crowding distance, as defined in [21], is used to choose the 

individual from sparsely populated part of the front. 

 

In every iteration, N existing individuals (parents) generate 

N new individuals (offspring) through simulated binary 

crossover and polynomial mutation [22]. Fitness function 

is then evaluated for all the offspring and the combined 

population of parents and children are ranked through non-

dominated sorting as before. Finally, the selection of N 

individuals for the next generation/iteration is done through 

the tournament described before in the combined 2N 

Figure 3: (a) -- NSGA-II overall procedure. (b) -- Detailed view 

of the Fitness Function Evaluation step. 

https://doi.org/10.24084/repqj17.202 10 RE&PQJ, Volume No.17, July 2019



population. The algorithm is terminated after a fixed 

number of generations to obtain a Pareto front with N best 

solutions, each with a wavelet family, quantizer and 

probability table for entropy coding. Note that during 

selection we maintain an external population of 25% (as 

suggested by [14]) to have adequate selection pressure for 

the elite solutions. 

 

4. Results 
 

The modules of the PQ signal compression are first 

designed using a training set, and then these modules are 

used with a test set to obtain the experimental results. 

Mathematical models, which are well known to closely 

represent real world disturbances (as given in [23]), are 

used to generate 1,600 signals for each of flicker, harmonic 

distortion, impulse transient, notching, oscillatory 

transient, voltage interruption, voltage sag and voltage 

swell. Of the 1600 signals for each disturbance, half are 

used for training and remaining for testing. Synthetic data 

is used to ensure each class of disturbance has a broad 

coverage of variability in training data that no existing real 

dataset provided, while allowing a fair and easily 

reproducible comparison between competing approaches. 

Note that the proposed approach is generic and can be 

easily extended to other classes of disturbances.  

 

The generated signals have a total duration of 10 cycles at 

60 Hz fundamental frequency, and sampled at 128 points 

per cycle (i.e., 7.68 kHz, in line with prior research [24]). 

Note that segmentation [15] results in varying number of 

samples for each test signal. 

 

The magnitude limits imposed (based on [25]) are -1 and 1 

pu in steady-state, 0.1 and 0.9 pu for voltage sag, 1.1 and 

1.8 pu for voltage swell, 2 and 9 pu for transients, and for 

harmonic disturbance, up to 25 harmonics are allowed each 

between 0.07 and 0.2 pu. We evaluated both the Huffman 

coding and Arithmetic coding as entropy coding options. 

We used N=100 number of individuals in the genetic 

algorithm, which at the end of optimizations provides 

parameters for 100 operating points on the RD curve.   

 

In the first experiment, we calculated the compression ratio 

achieved for each class of disturbance averaged over all test 

signals at a distortion of NMSE = 1.0 x 10 -5, which is the 

generally accepted standard in prior work [10] [11] [12] 

[13]. Results comparing the prior art, which uses 

nonadaptive basic threshold quantizer and Daubechies 4 

wavelet, with the proposed approach of using jointly 

optimized adaptive ECSQ and wavelet transforms, is 

presented in Table 1, for both Huffman and Arithmetic 

coding options. We can clearly see that the proposed 

approach provides considerable improvement in 

compression ratio for all disturbances. While the average 

improvement over all disturbances is around 1.45x, for the 

“Impulse transient” disturbance, the compression ratio is 

almost doubled. Amongst the entropy coders, the 

Arithmetic coder is the clear winner with an average 

compression ratio improvement of around 1.15x. 

 

To demonstrate the performance improvement specifically 

due to change in wavelet transform, we compared the 

performance of using the Daubechies 4 wavelets of prior 

art, with the Biorthogonal 3.1 wavelets, which was the best 

solution for all disturbances in our optimization approach, 

for both the Huffman and Arithmetic coding options.  

 

The Pareto front (or the RD curve) averaged over all 8 

disturbances, for the 4 variations is shown in Figure 5. 

Clearly, the optimally derived Biorthogonal 3.1 wavelet 

transform outperforms the previously used transform, 

providing around 10 to 15% reduction in rate (see black-

diamond versus red-circle curves, and green-triangle versus 

blue-square curves). Arithmetic coding provides further 

15% reduction in rate when compared to Huffman coding 

(see black-diamond versus green-triangle curves, and red-

circle versus blue-square curves). Overall, using 

Biorthogonal 3.1 wavelet transform with Arithmetic coding 

provides around 25% reduction in rate when compared to 

using Daubechies 4 wavelet transform with Huffman 

coding. 

 

These results clearly demonstrate the effectiveness of the 

proposed updates to the PQ signal compression framework 

and the joint optimization approach. 

 
Table 1 - Compression ratio comparison. 

Distortion (NMSE) = 1.0 x 10-5 

 Compression 

 Huffman coding Arithmetic coding 

Disturbance Prior Art Proposed Approach Prior Art Proposed Approach 

Flicker 16:1 26:1 17:1 27:1 

Harmonic distortion 13:1 15:1 13:1 16:1 

Impulse transient 10:1 17:1 11:1 18:1 

Notching 12:1 17:1 13:1 17:1 

Oscillatory transient 14:1 20:1 15:1 22:1 

Voltage interruption 23:3 35:1 30:1 48:1 

Volstage sage 21:1 29:1 24:1 37:1 

Voltage swell 19:1 23:1 21:1 29:1 
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Figure 5: Performance comparison. 

 

 

5. Conclusion 
 

This paper demonstrated that jointly designing the PQ 

signal compression modules of wavelet transforms, non-

uniform quantizers and entropy coding, using a genetic 

algorithm based optimization framework, resulted in 

significant improvement in PQ signals compression. 

Contrary to current approaches, which deploy ``off the 

shelf'' compression modules that were designed for other 

applications, the proposed approach leverages the ability to 

automatically classify the disturbances and designs the 

modules jointly while accounting for actual data statistics 

adapted to each category of disturbance. As a result of this 

joint optimization, Biorthogonal 3.1 emerged as the better 

choice of wavelet transform, in contrast with the currently 

employed Daubechies 4 wavelets. The overall experimental 

results demonstrate the significant performance 

improvement obtained by the proposed approach. Future 

research directions include, extending the adaptivity to 

hyper-local statistics, e.g., quantizers and entropy coders 

adapted to individual frequency components, and designing 

the modules for more categories of disturbances and their 

combinations. 
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