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Abstract. The design of fast respond fault detection systems 
to wind turbines results an important subject and represents a 
notable challenger too. This paper presents a recent approach on 
a quick response fault detection system to pitch actuators in 
controlled wind turbines. The obtained time detection is about 10 
seconds. Our scheme was possible by manipulating an adaptive 
parametric estimation block by varying the time scales among 
the actuator and the identification process dynamics. 
Additionally, numerical experiments are realized to support the 
main contribution. 
 
Key words.  Wind turbines, on-line fault detection, 
adaptive dynamics. 
 
1. Introduction 
 
Nowadays, it is well recognized the benefit impacts of 
renewable energies in ours and future life on earth and on 
other planets too, as Mars will be in the near future [1]-
[2]. To assure an efficient operation on energy conversion 
of these renewable systems, an efficient and editable 
response fault detection system is a key factor [3]-[4]. 
Among the different renewable energy approaches, the 
wind turbines operate with electro-mechanical parts in 
comparison to, for instance, photovoltaic developments. 
Therefore, a mechanical fault detection algorithm is 
mandatory. Hence, the main objective of this paper is to 
propose a programmed adaptation gain in an adaptive 
identification scheme to develop an efficient fault 
detection method to pitch actuators in controlled wind 
turbines. In literature, there are many contributions on it. 
Some are based on data analysis [5], others are based on 
dynamical observers [6], and so on [7]. On the other hand, 
adaptive identification techniques can be tracked from the 
70s [8], since then, it is a well-studied topic [9].  In the 
adaptive identification domain, the most used methods are 
[8]: 1) The gradient algorithm, 2) the recursive least-
squares technique, 3) the model reference identification 
approach, and 4) the normalized gradient process with 
projection. For instance, the recursive least-squares 
approach is a good technique, but its algorithm does not 
comprise an adaptation gain on its adaptation mechanism 
[8]. Here, by using a time-scale transformation, this gain 
parameter can be trivially added to this identification 

process and then accelerating the parametric identification 
time. Actually, this innovation allows us to develop our 
identification process technique. When this development 
is applied to the fault detection objective in pitch actuators 
of wind turbines, its performance is notorious. 
 
The rest of the paper is structured as follows. Section 2 
gives a brief on adaptive parametric on-line identification, 
the recursive least-squares algorithm, along with our 
contribution by adding it the adaptation gain to tune the 
convergence speed of the identification process. Section 3 
describes the problem statement on fault detection in pitch 
actuator systems of wind turbines. Section 4 describes our 
main contribution followed by numerical experiments. 
According to these experiments, a fault can be detected 
between 1 to 10 seconds. Finally, Section 5 presents our 
main conclusions. 
 
2. Adaptive parametric on-line identification 
The recursive least-squares algorithm for parametric 
identification uses the following performance index [8]: 
 

J= ∫�𝜃𝑇(𝑡)𝑤(𝜏) − 𝑦𝑝(𝜏)�2 𝑑𝜏,                 (1) 
 
where 𝜃(𝑡) ∈ ℝ𝑝is the on-time estimation vector of the 
parametric plant, 𝑤(𝑡) ∈ ℝ𝑞 is the regression vector,  and 
𝑦𝑝 ∈ ℝ is the plant output given by : 
 

𝑦𝑝(𝑡) = 𝜃∗𝑇𝑤(𝑡)                (2) 
 
being 𝜃∗ ∈ ℝ𝑝 the nominal system vector parameter. 
Then, the recursive least-squares algorithm is stated as 
follows [8]: 
 
Theorem 1.- The following adaption dynamics minimize 
the performance index in equation (1): 
 

�̇�(𝑡) = −𝑃(𝑡)𝑤(𝑡)𝑤𝑇(𝑡)𝑃(𝑡),         (3) 
𝜃(𝑡)˙ = −𝑃(𝑡)𝑤(𝑡)�𝑤𝑇(𝑡)𝜃(𝑡) − 𝑦𝑝(𝑡)�.     (4) 

 
Moreover, if the excitation vector signal 𝑤(𝑡) is a 
persistent excitation class, then 𝜃(𝑡) converges to 𝜃∗as 
time goes on. 
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Remark 1.- The standard notation has been used. That is, 
the dot notation (.) represents derivation with respect to 
time. Additionally, observe that 𝑃(𝑡) ∈ ℝ𝑞×𝑞. 
 
The main drawback of the above principal result is the 
missing adaptation gain parameter. This parameter is 
common in adaptive parametric algorithms to tune the 
estimation speed of the parametric identification process. 
This is so important to adequate the system identification 
dynamic to the plant time response [10]. A way to include 
this gain parameter to the recursive least-squares 
algorithm is by realizing a time-scale transformation: 
= 𝑔𝑡 . Therefore, we arrive to the next evident result: 
 
Proposition 1.- The following alternative on adaption 
dynamics minimize the performance index in equation (1): 
 

�̇�(𝑡) = −𝑔1𝑃(𝑡)𝑤(𝑡)𝑤𝑇(𝑡)𝑃(𝑡),            (5) 
𝜃(𝑡)˙ = −𝑔2𝑃(𝑡)𝑤(𝑡)�𝑤𝑇(𝑡)𝜃(𝑡) − 𝑦𝑝(𝑡)�.     (6) 

 
Additionally, if the excitation vector signal 𝑤(𝑡) is a 
persistent excitation class, then 𝜃(𝑡) converges to 𝜃∗as 
time goes on. Now, the real parameters 𝑔1 and 𝑔2 
independently control the transient responses of the 
systems in (5)-(6), respectively. 
 
Remark 2.- The dot notation (.) also stand for derivation 
with respect to time even when we realized a time-scale 
transformation, for simplicity notation. 
 
Remark 3.- The parameters 𝑔1 and 𝑔2are introduced to 
manipulate different time scales in the dynamics stated in 
(5)-(6). These time scales manipulation strategy gives us 
the option to correctly drive the systems to easily detect 
faults on a given system, as it is evidenced later. This is 
the main key of our approach. 
 
 
3. Problem statement 
Usually, the blade pitch system of wind turbines consists 
of three identical independent pitch actuators governed by 
using a PI controller each one [3], [4], [11]. Moreover, the 
dynamical model of a pitch actuator wind turbine can be 
captured by using the next mathematical model 
[3],[4],[11]: 
 

𝛽(𝑠)
𝛽𝑟𝑒𝑓(𝑠)

= 𝜔𝑛2

𝑠2+2𝜁𝑤𝑛𝑠+𝜔𝑛2
 ,                (7) 

 
where 𝛽(𝑡) = 𝑦𝑝(𝑡) is the pitch angle related to its 
actuator and represents the plant output, 𝛽𝑟𝑒𝑓(𝑡) is the 
reference command supplied by the control power 
management system.  Additionally, 𝑤𝑛 is the natural 
frequency, and 𝜁is the damping ratio of the pitch actuator 
mechanism. In hydraulic pitch actuators, its degradation 
performance comes from different scenarios such as pump 
wear, hydraulic leakage, and high air oil content [3-5]. 
Obviously, these scenarios may affect the actuator 
behaviour leading to dangerous faults. From the plant 
parametric point of view, these faulty stages can be 
parametrically captured. See Table I. Therefore, the 
problem statement consists to design a quick fault 

detection system for a pitch actuator mechanism in wind 
turbines by using the input-output information of the 
plant. It is so important to note that the maximum blade 
pitch rate in wind turbines is usually stated as ±8deg/s 
[3]. Later on, in our experimental results, this fact is 
satisfied. 
 
 
Table 1.- Parameters for hydraulic pitch system under common 

faulty scenarios [4,11]. 
Scenario Parameter 

𝜔𝑛  
(rad/s) 

Parameter 
𝜁 
 

No fault  (𝐻) 11.11 0.6 

High air oil content  (𝐹1) 5.73 0.45  

Hydraulic leakage (𝐹2) 3.42 0.9 

Pump wear (𝐹3) 7.27 0.75 

 
 
 
4. Fault detection design and numerical 
experiments 
 
This section presents our fault detection approach by 
using the result presented in Proposition 1. Additionally, 
and in order to obtain a reduced fault detection scheme, 
we are going to use, just for design purposes, the 
following reduced model of the pitch actuator model [3]: 
 

�̇�(𝑡) = −𝑎1𝛽(𝑡) + 𝑎2𝛽𝑟𝑒𝑓(𝑡),               (8) 
 

where 𝑎1and 𝑎2are the model actuator parameters.  
 
The overall fault detection system is based on the 
information signals coming from the input and output of 
the pitch actuator system. See Figure 1. In this Figure, the 
proposed on-line parametric estimation process employs 
the filtering signals of the input/output of the actuator 
device (then, the parameter 𝜆 is known).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.- General representation of the fault detection system. 
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From the system in equation (8), its frequency-domain by 
using Laplace transformation gives: 
 

𝑠𝛽(𝑠) = −𝑎1𝛽(𝑠) + 𝑎2𝛽𝑟𝑒𝑓(𝑠),           (9) 
 
which we may manipulate to produce: 
 

𝑠𝛽(𝑠)
𝑠+𝜆

= −𝑎1𝛽(𝑠)
𝑠+𝜆

+ 𝑎2𝛽𝑟𝑒𝑓(𝑠)

𝑠+𝜆
.          (10) 

 
The above is then equivalent to: 
 

𝛽(𝑠) = (𝜆−𝑎1)𝛽(𝑠)
𝑠+𝜆

+ 𝑎2𝛽𝑟𝑒𝑓(𝑠)

𝑠+𝜆
.          (11) 

 
Then, and in correlation to Figure 1, we have: 
 

𝛽(𝑠) = (𝜆 − 𝑎1)𝑤2(𝑠) + 𝑎2𝑤1(𝑠).      (12) 
 

In matrix notation, the above yields: 
 

𝛽(𝑠)�
𝑦�̂�(𝑠)

= [𝑎2 (𝜆 − 𝑎1)]�����������
𝜃𝑇(𝑠)

�𝑤1
(𝑠)

𝑤2(𝑠)������
𝑤(𝑠)

,  (13) 

 
where the system (13) converges to system (2) if 𝜃(𝑡) =
[𝜃1(𝑡) 𝜃2(𝑡)]𝑇converges to 𝜃∗ = [𝑎2 (𝜆 − 𝑎1)]𝑇as 
time goes on. That is, if 𝜃1(𝑡) → 𝑎2and 𝜃2(𝑡) → (𝜆 − 𝑎1) 
as time goes on. Therefore, 𝑦�̂�(𝑡) → 𝑦𝑝(𝑡). Hence, we 
have the following parametric estimation rules: 
 

 𝑎2̂(𝑡) = 𝜃1(𝑡),                           (14) 
 
and 
 

𝑎1̂(𝑡) = 𝜆 − 𝜃2(𝑡).                         (15) 
 
 
Finally, and by following Proposition 1, Figures 2 to 9 
present our numerical experiment results. In these 
experiments, we implement the dynamic actuator stated in 
(7) and by using the data displayed in Table 1. Figures 2 
and 3 show the dynamic results from the healthy stage to 
the faulty scenarios 𝐹1(red line), 𝐹2(blue line), and 
𝐹3(green line) activated at 𝑡 = 250 seconds.  But the 
yellow line corresponds to the healthy case all along the 
simulation time for comparison. This colour code labels 
will be kept in further results analysis. From these figures, 
it is clear that the faulty scenarios can be distinguished 
from the healthy stage. Hence, by using a reference 
healthy model, as in [4], a fault detection system would be 
straightforwardly realized. Figure 4 shows the used input 
signal to the system. On the other hand, Figures 5 and 6 
show the system output for all cases, where from these 
signals, it is almost impossible to clarify the healthy case 
from the faulty ones. Furthermore, Figures 7 and 8 show 
another set of experiment results now by using the input 
signal shown in Fig. 9. The same conclusion can be 
reached. Additionally, from the previous results, we can 
note that a fault in Table 1 may be detectable in less than 
10 seconds.  Additionally, just one parameter observation 
is enough to conclude (we use 𝑎1(𝑡)). In these 
experiments, we use 𝑔1 = 10, 𝑔2 = 1000, 𝜆 = 5.87, 

𝑃(0) = 𝐼2×2, and 𝜃(0) = [0 0]. The value of 𝜆 =
5.87was obtained by using the healthy system parameters 
related to 𝜆 = 𝑤𝑛�1 − 2𝜁2 (the cut frequency of a second 
order system). Finally, to say that if 𝑔1 = 𝑔2 = 1(the 
standard adaptive parametric estimation algorithm), the 
fault detection system performance is totally degraded. 
 
 

 
 

Fig. 2.-  Simulation results  for 𝑎1(𝑡) from the healthy case to 
the fault  scenarios activated at 𝑡 = 250 seconds but the yellow 

line which corresponds to the healthy case on along the 
simulation time for comparison.   

 
 
 
 

 
 
Fig. 3.- Simulation results: A zoom version of the picture on Fig. 

2. 
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Fig. 4.- The employed input signal to the system. 

 
 

 
 

 
Fig. 5.-  System output for all scenarios, the healthy and faulty 

cases 𝑦𝑝(𝑡) = 𝑥1(𝑡). 
 
 

 
 
 

Fig. 6.-  A zoom version of the picture on Fig. 5. 

 

 
Fig. 7 .- Simulation results  for 𝑎1(𝑡) from the healthy case to 

the fault  scenarios activated at 𝑡 = 250 seconds but the yellow 
line which corresponds to the healthy case on along the 

simulation time for comparison. Second example. 
 
 

Fig. 8 .- Simulation results: A zoom version of the picture on 
Fig. 7. Second example. 

 
 
 

 

 
Fig. 9.- The employed input signal to the system. Second 

example. 
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5.  Conclusion 
 
This paper has presented a recent approach on fault 
detection system to pitch actuators of wind turbines. This 
approach is based on manipulating the time scales among 
the actuator system of the wind turbine and the dynamic 
stages of the adaptive parametric estimation algorithm. Its 
main advantage is its quick response time. 
 
Acknowledgement 
This research was completely funded by the Spanish 
Ministry of Economy and Competitiveness/Fondos 
Europeos de Desarrollo Regional (MINECO/FEDER) 
grant number DPI2015-64170-R. 
 
References 
 
[1] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, 

R. Gorini, “The role of renewable energy in the global 
energy transformation”, Energy Strategy Reviews (2019). 
Vol. 24, pp. 38–50. 

 
[2] A. Delgado-Bonal, F. J. Martín-Torres, S. Vazquez-Martín, 

M. P. Zorzano, “Solar and wind exergy potentials for Mars”, 
Energy (2016). Vol. 102, pp. 550-558. 

 
[3] N. Luo, Y. Vidal, L. Acho (Eds.), Wind Turbine Control and 

Monitoring, Springer Verlag, Germany (2014), pp. 301-334. 
 
[4] M. Nazir, A. Q. Khan, G. Mustafa, M. Abid, “Robust fault 

detection for wind turbines using reference model-based 
approach”, Journal of King Saud University-Engineering 
Sciences (2017). Vol. 29(3), pp. 244-252. 

[5] M. Ruiz, L. E. Mujica, S. Alferez, L. Acho, C. Tutiven, Y. 
Vidal, F. Pozo, “Wind turbine fault detection and 
classification by means of image texture analysis”, 
Mechanical Systems and Signal Processing (2018). Vol. 107, 
pp. 149-167. 

 
[6] P. F. Odgaard, J. Stoustrup, R. Nielsen, C. Damgaard, 

“Observer based detection of sensor faults in wind turbines”,  
Proceedings of European Wind Energy Conference (2009),  
pp. 4421-4430. 

 
[7] W. Qiao, D. Lu, “A survey on wind turbine condition 

monitoring and fault diagnosis—Part I: Components and 
subsystems”, IEEE Transactions on Industrial Electronics 
(2015). Vol. 62(10), pp. 6536-6545. 

 
[8] S. Sastry, M. Bodson, Adaptive control: stability, 

convergence and robustness, Courier Corporation, 
Massachusetts (2011), pp. 45-98 . 

 
[9] N. Kalouptsidis, S. Theodoridis, S. (Eds.), Adaptive system 

identification and signal processing algorithms, Prentice 
Hall,  New York (1993), pp. 7-81. 

 
[10] H. M. Usman, S. Mukhopadhyay, H. Rehman, “Permanent 

magnet DC motor parameters estimation via universal 
adaptive stabilization”, Control Engineering Practice (2019). 
Vol. 90, pp. 50–62. 

 
[11] S. Cho, Z. Gao, T. Moan, “Model-based fault detection, 

fault isolation and fault-tolerant control of a blade pitch 
system in floating wind turbines”, Renewable Energy (2018). 
Vol. 120, pp. 306-321. 

  

 
 

https://doi.org/10.24084/repqj18.202 17 RE&PQJ, Volume No.18, June 2020


	3. Problem statement
	4. Fault detection design and numerical experiments
	Fig. 1.- General representation of the fault detection system.
	From the system in equation (8), its frequency-domain by using Laplace transformation gives:
	5.  Conclusion



