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Abstract. Along with the massive installation of Smart 
Meters in the distribution grid, new applications, such as state 
estimation, have been developed in order to improve the 
operation of the electrical network. Such applications require a 
faithful knowledge of the network topology, specifically the 
feeder and phase where the customers are connected to. Classical 
solutions for this complex combinatorial problem usually fail in 
such mission. Fortunately, with the development of artificial 
intelligence techniques, such as machine learning through neural 
networks, it can be solved efficiently. This works shows the 
results of applying, to different currently-operating distribution 
grids, artificial neural networks which discover the customer 
connectivity to the network using smart meter measurements. 
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1. Introduction 
 
The installation of new measurements devices in the low 
voltage distribution grid, including the Smart Meters in 
every consumer and distributed generation, and the 
secondary substation meters, is continuously providing a 
large quantity of electrical data. However, distribution 
system operators keep this information in databases which 
are mainly used for billing purposes and rarely leveraged 
for extracting new knowledge. Although the computer 
memory and storage is highly efficient, taking advantage 
of the measurement data can benefit not only the electric 
market, but also improve the planning and operation of the 
low voltage distribution grid. For this reason, the research 
and development of new technologies capable generate 
knowledge by exploiting low voltage data has become a 
high-interest matter within the research centers and the 
energy distributors. 
 
This topic has also raised the interest of the governmental 
associations, who have created different programs, for 
financing related research and development projects, in 

example, the FEDER Interconnecta program. The latest 
includes multiple initiatives, such as the MONICA project 
[1],[2], and PASTORA project [3], who have become 
pioneers in the application of state estimation in medium 
voltage and low voltage distribution networks, not only 
being advantageous for the distribution system operator 
but also increasing the state of the art of the line of 
research [4]. Others have being studying the leverage of 
this data and results to the discovering of non-technical 
losses [5], and to the optimization of the network losses 
and unbalances by an unbalance operation of the 
distributed generation [6]. 
 
Nevertheless, these researches and applications often have 
to deal with an obstacle when being applied in an 
operational environment: the definition of the network 
topology. Database errors and misinformation, uncertainty 
in the network connectivity, and the constant change of 
the distribution grid, are the main source of errors when 
applying the previous technologies or when calculating 
energy balances. Confidence in the connectivity of 
consumers and distributed generation to the three-phase 
four-wire low voltage network is an essential base to 
sustain the development of new applications. 
 
In such mission, previous works have been proposed to 
solve this problem by using different sources of 
information. Some uses geographical information [7] to 
correctly associate consumers to a feeder or secondary 
substation. Others improved this methodology by 
including the voltage measurements [8]. However these 
methods ignored the connectivity to a electrical phase and 
failed when the geographical information system was 
missing or uncompleted. 
 
In current works at industrial environments, the usage of 
current measurements differences [9] is proposed to verify 
the network connectivity, in both, to feeder and phase. 
However, it requires the installation of an specific 
manufacturer device in the secondary substation, and the 
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update of the Smart Meter firmware, which could become 
a drawback to some distribution system operators. 
Along with the advance in artificial intelligence 
technologies, such as deep neural networks [10], new 
implementations can provide an statistical leverage of the 
historical and continuously generated data, in order to 
solve the connectivity problem whilst providing new 
features to the solution, such as three-phase consumers 
characterization or non-technical losses detection. This 
works shows the results of applying this emerging 
technology to discover consumer connectivity in a real 
operating environment, Enel's Smartcity Málaga. 
 
2. Modelling and Methodology 
 
This section shows the elementary foundations of the 
proposed connectivity modelling and methodology, and 
clarifies the performance indicators that have been applied 
in the benchmarking to validate the technology. 
 
The following design is defined by the constraint that 
Ingelectus focus on the development of a tool capable of 
solving the problem while taking into account that the 
technology must be: applicable to all currently-operating 
distribution grids with a minimum implementation cost, 
provide as much information as possible whilst adapting 
to the constant change of the network, capable of 
leveraging previously generated historical data to solve 
the problem in early stages of its implementation, and 
independent of the meters' manufacturers. 
 
A. Measurement Dataset 
 
Although big distributors may have a significantly wider 
range of electrical data within their SCADA systems, both 
small and big distributors are using the energy 
measurements in order to bill their consumers. Bearing the 
stated constraints, the usage of active energy 
measurements and historical data is taking as an input for 
the methodology used in the first implementation. This 
work also shows an second implementation, including 
reactive energy measurements, which improves the results 
of the solution. 
 
In order to the methodology to detect connectivity to a 
phase and feeder, energy measurements from the 
secondary substation are necessary. Fortunately, along 
with the increase in distributed generation and flexible 
grids, this is becoming common within the Spanish 
distributors. 
 
B. Connectivity Model 
 
The work assumes that the topology of the network, 
electrical lines and nodes, is uncertain or unavailable. 
Thus, for each consumer and feeder or phase, a connection 
probability, or feed, is assigned and will be expected to be 
corrected by the input data. 
 
The output of the algorithm is a classification based in a 
probability of the consumers within the stated network. 

 
 
Fig. 1.  Representation of iteration learning of the Ingelectus' 
neural network classification algorithm in a 400 single-phase 
consumers network.  
 
 
In the Fig. 1, the Ingelectus learning algorithm, based in 
neural networks, corrects the connection probability, 
normalizes and classifies the consumers depending on 
their nature: 
 

1) Single-phase consumers (1-P): a list of single-
phase consumers with its feeder and phase is 
stated as an output. 

2) Three-phase consumers (3-P): a list of three-
phase consumers along with three percentage 
values are returned per client, indicating the most 
probable consumption characterization. 

3) Non-consumers (NC): a list of consumers which 
were included as an input but that are statically 
not belonging to the feeders or phases included. 

 
These outputs are often useful for applying energy 
balances which provides a better understanding of where 
the technical and non-technical losses resides. 
 
C. Considered limitations 
 
The objective of the algorithm is to solve the problem in a 
industrially relevant and operation environment. Thus, 
different limitations must be considered for the data used 
for learning and classification. The most common errors 
when dealing with real operational data are: time 
synchronization, measurement deviation error, non-
technical losses or fraud connections, and misplacing or 
lacking of information. 
 
The proposed algorithm solves the time synchronization 
and measurement deviation error by assuming a Gaussian 
distribution in the provided measurements. However, the 
latest limitations can affect the success of the results. The 
decrease in performance of these limitations are studied in 
the results sections of this paper. 
 
D. Key Performance Indicators 
 
As a classification problem, it is important to define those 
metrics used to evaluate the performance of the algorithm. 
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These metrics are the same to phase identification as well 
as feeder identification. The Key Performance Indicators 
(KPI) used for that purpose are those that fulfil a 
confusion matrix. Using this matrix applied to the problem 
solved in this paper, the two main conditions are:  
 

4) Positive condition (P): Smart Meter identified, it 
belongs to a phase or feeder 

5) Negative condition (N): Smart Meter not 
identified in reality, it does not belong to any 
phase or feeder 

 
Once defined the conditions, hereunder it is detailed the 
four different outcomes depicted in the confusion matrix.  
 

1) True positive (TP): Smart Meter identified by 
algorithm matching with reality. 

2) False positive (FP): Smart Meter identified by 
algorithm not matching with reality. 

3) False negative (FN): Smart Meter not identified 
by algorithm while it is identified in reality. 

4) True negative (TN): Smart Meter not identified 
by algorithm, matching with reality. 

 
For this study, success is defined as guessing properly 
whether a Smart Meter belongs or not to a phase or feeder, 
hence: TP + TN. 
 
3. Benchmarking Results 
 
This section is devoted to show and discuss the results 
obtained in the different test sets that have been carried 
out. Every test has been done using active and reactive 
energy from real clients and header sensors installed in 
some Secondary Substations (SS) contained in the scope 
of the Smartcity Málaga Living Lab from Endesa. In order 
to understand the insights provided by the benchmarking, 
hereunder every test is explained. 
 
A. Montecarlo Simulations 
 
Since the beginning of these studies, the main objective 
was to develop a tool capable of adapting to every 
situation that may occur during its implementation and 
could affect to its performance. Over the course of the 
tests, two drawbacks have been faced: 
 

1) Communication problems:  since Smart Meters 
(SM) where installed in field, utilities have to 
cope with the challenge of communicating with 
their whole SM fleet. This involves a lack in the 
energy curves of a part of their clients. 

2) Initial clients connection uncertainty: there is no 
guarantee that the SMs whose energy curves are 
inputs to the algorithm are actually connected to 
the Secondary Substation. 

 
Both drawbacks have been considered as a non-technical 
losses parameter. 
In order to simulate these kind of situations and study the 
performance of the algorithm, forty different scenarios has 
been used with Montecarlo’s algorithm. The idea 

generating these scenarios was to increase, randomly, the 
percentage of non-technical losses from 0% to 100%. 
The following image compares the evolution of the 
identification algorithm's performance (red points) to the 
success obtained choosing the element to which a Smart 
Meter is connected randomly (green points). 
 

 
 
Fig. 2.  Comparison between Ingelectus’ algorithm success and 
random selection success.  
 
As it can be seen in Fig. 2, even having a 40% of non-
technical losses, the success of the algorithm is greater 
than 80%. 
 
B. Benchmark 1: Proof-of-Concept 
 
The very first Proof-of-Concept (PoC) in which the 
algorithm was displayed is PASTORA project (Preventive 
Analysis of Smart grid with real Time Operation and 
Renewable Assets Operation). In this PoC, the algorithm 
was applied in a particular Secondary Substation formed 
by 5 feeders and 121 clients downstream connected, 
particularly 86 single-phase meters and 35 three-phase 
meters, with a total of 0.77 MW of contracted power.  
 
Using the data from these Smart Meters to find the phase 
and feeder identification in a completely real situation 
and, then, compare with the original connections was the 
main idea of this POC. For that purpose, some field 
inspections were carried out in order to guarantee that the 
original identification to which the algorithm’s results will 
be compared is correct. 
 
The characteristic of the implementation is using active 
and reactive energy curves available for a period of 1.5 
months and deal with a 50% of non-technical losses. In 
this case, the main objective was to demonstrate how 
active (P) and reactive (Q) energy curves support phase 
and feeder identification working in conjunction rather 
than input them independently. 
 

Table I. – POC results 
Input data Phase identification 

success (%) 
Feeder identification 

success (%) 
P + Q 79.70 66.00 

P 9.50 20.20 
Q 45.23 9.20 

 
Table I shows how using both sources of data as input 
strongly benefits the results. 
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C. Benchmark 2: Operational Environment Validation 
 
The Operational Environment Validation of Ingelectus’ 
tool has also been displayed in PASTORA project but, this 
time, the target was to test how it behaves being 
implemented in a few different kind of SS within the 
scope of the project, varying the amount of clients 
connected downstream and using a month of data of only 
active energy curves. The main characteristics of each SS 
are detailed in Table I. 
 

Table II. – Operational Environment Validation scope 
SS Number of clients Contracted Power 

SS_1 235 1.03 MW 
SS_2 410 1.42 MW 
SS_3 548 3.75 MW 
SS_4 631 2.14 MW 
SS_5 840 2.75 MW 
SS_6 1045 6.78 MW 

 
Other important aspect about this second benchmark is 
that, in addition to complexity that involves identify phase 
and feeder of a SS consisting of up to 1045 clients, it has 
been also simulated the two drawbacks previously 
introduced by generating 28 validation scenarios, focusing 
on two aspects: 
 

6) Clients that actually belongs to the SS (D1). 
Every scenario misses a particular percentage of 
energy curves from the SS’s actual clients. This 
percentage goes from 0% to 30%, with a step of 
5%. Depending the size of the SS, every 
percentage will imply a different number of 
clients. 

7) Clients that belongs to adjacent SS (D2).  Every 
scenario includes a particular percentage of 
energy curves from the clients that actually 
belongs to an adjacent SS. This percentage goes 
from 0% to 7.5%, with a step of 2.5%. 

 
Hereunder it is presented the evolution of the phase 
identification’s success for all the SS, varying D1 from 
0% to 30% (represented in X-axis as amount of clients) 
and fixing D2 to 0%. 

 
 
Fig. 3.  Evolution of phase identification success for all SS 
varying D1 and fixing D2.  

 
As seen in Fig. 3, a great performance is obtained for all 
SS despite facing critical such critical situations. When all 
clients’ curves input the algorithm (D1 equals to 0%), the 
success for all SS is almost over 90% (98.25%, 95.74%, 
95.54%, 93.77%, 89.90% and 86.84%, for each SS 
respectively). As D1 starts growing, success tendency 
becomes more or less linearly decreasing, reaching 70% 
of success in the worst scenario for SS_6. It must be 
highlighted that under 100 clients of D1, success remains 
over 80%. 
 
4. Conclusion and Future Work 
 
This paper has explored the benefits of applying neural 
networks to the leverage of low voltage distribution grid 
active and reactive energy measurements to obtain the 
network connectivity of actual operating networks. For 
doing so, Ingelectus proposed an innovative algorithm 
which provides differentiation between connections and 
non-connections, feeder and phase connectivity, and 
three-phase consumption characterization, considering the 
possible lack and uncertainty of topology and 
measurement data, and fraud connections. The paper has 
quantified the performance of the proposed strategy a 
different technology readiness level (TRL): simulations, 
industrially relevant and operational environments. 
 
The results shows that the proposed technology performs 
significantly well as a solution to the problem, obtaining a 
mean of 90% of success (98.25%, 95.74%, 95.54%, 
93.77%, 89.90% and 86.84%) in real operational 
distribution grid, and,  showing greater than 80% of 
success when the non-technical losses and/or missing data 
are under 40%. This clearly proves the reliability of the 
technology for solving the connectivity problem. In 
addition, the technology also provides: information about 
the three-phase consumption characterization, is capable 
of detecting and fix changes in topology with the 
upcoming information, and is totally independent of the 
source of measurements data, hence any manufacturer or 
version of the meter is available to the distribution system 
operator. 
 
This technology may be used as an input to other 
solutions, such as state estimation to improve the certainty 
of the connectivity of the network, or energy balances, to 
detect non-technical losses. The latest provides an 
improvement in the new upcoming measurements, hence 
allowing the algorithm to perform better. 
 
Finally, it is important to remark that this algorithm can be 
extended with multiple inputs like power, current and 
voltage measurements, the topology of the grid, and the 
geographical information. In the opinion of the authors, 
this work may have promising future extensions, whilst 
being able to be currently applied in an operational 
environment. 
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