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Abstract. In Portugal, wind power represents one of the largest 
renewable sources of energy in the national energy mix. The 
investment in wind power started several decades ago and is still 
on the roadmap of political and industrial players. One example is 
that by 2030 it is estimated that wind power is going to represent 
up to 35% of renewable energy production in Portugal. With the 
growth of the installed wind capacity, the development of methods 
to forecast the amount of energy generated becomes increasingly 
necessary. Historically, Numerical Weather Prediction (NWP) 
models were used. However, forecasting accuracy depends on 
many variables such as on-site conditions, surrounding terrain 
relief, local meteorology, etc. Thus, it becomes a challenge to 
obtain improved results using such methods. This article aims to 
report the development of a machine learning pipeline with the 
objective of improving the forecasting capability of the NWP’s to 
obtain an error lower than 10%. 
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1. Introduction 
 
The worldwide significant increase of renewable energies is 
not only due to their important environmental advantages, 
but also due to their advantages in increasing a country’s 
energetic independence while promoting domestic 
economic growth. In Portugal alone, by the end of the year 
2021, the installed capacity of renewable energies was 
expected to exceed 14.6 gigawatts (in a total national 
installed capacity of 19.2 GW). This value represents an 
increase of 4.5% compared to 2020. In addition, in 2021 
65.4% of the electricity generated in mainland Portugal was 
from renewable energy sources, where more than 26% was 
generated by wind energy [1]. One of the most essential 
tasks in power systems operation and control is short and 

medium-term forecasting. The short and medium-term 
forecasting of electric power production at wind farms is 
essential because it allows power production schedules at 
conventional power plants to be established and also to 
determine power reserve’s needs. Thus, accurate forecasts 
of electric power production at wind farms play a vital 
role. However, the random and unstable characteristics of 
the wind energy source make it difficult to forecast the 
generated power. Hence, extensive efforts have been 
devoted to the developments and improvements of wind 
speed and power forecasting by numerous energy and 
environment-related research centres and universities [2]. 
This work tackles the need to develop forecasting models 
that could provide improved performances and it is 
divided into two parts: i) Single Machine learning models 
and, ii) Combination of models. The first part starts with 
an exploratory data analysis on the NWP data, described 
in chapter 3. An extensive Exploratory Data Analysis and 
Feature Engineering process followed (chapter 4). The 
Feature Engineering is divided into three main sections: i) 
Feature Selection, ii) Layers’ Interactions and iii) Lag 
Features. After improving the dataset, different machine 
learning techniques were tested. The developed models are 
presented in chapter 5 and are designated as base-learns to 
be used in the second part of this work. The second part, 
presented in chapter 6, aims to combine the models 
previously developed to reduce the Normalized Root 
Mean Square Error (NRMSE) (1), presented in chapter 2. 
In order to improve the forecasting capacity, two 
approaches were taken. The first one was Ensemble 
Modelling, where the base-learns are combined with 
different algorithms. The second one was Recurrent 
Neural Network, where we wanted to study the feasibility 
of combining the base-learns with this strategy. 
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2. Performance Indicators 
 
The error measure considered is the NRMSE. For each 
model, the predicted time-series is decomposed in disjoint 
windows with a horizon of 72h. 
 

 
Fig. 1. Error evaluation scheme 

 
In the process of evaluation, NRMSE is calculated for each 
time-step, as shown in Fig. 1. For the time-step i, NRMSE 
is calculated the following way: 
 

 𝐍𝐑𝐌𝐒𝐄𝐢 =
𝟏

𝑷𝒇𝒂𝒓𝒎

ට
∑ (𝒚𝒊,𝒋ି𝒚ෝ𝒊,𝒋)𝟐𝑵

𝒋స𝟏

𝑵
× 𝟏𝟎𝟎%  (1) 

 
where yi,j is the real value, 𝒚ෝi,j is the predicted value, Pfarm is 
the installed capacity of the wind farm and N is a constant 
corresponding to the number of 72h windows. The NRMSE 
is a vector of size T. The model error is evaluated on the 
average of the NRMSE, one example is shown in Fig. 2. 
 

 
Fig. 2. NRMSEi representation example. The black line 

represents a random i, in this case is i = 39 
 
3. NWP data 
 
The original data used in this work are the forecasts of an 
NWP model (the MM5 model) for a Portuguese wind farm. 
The MM5 model, short for Fifth-generation Mesoscale 
Model, is a mesoscale model that can describe the behaviour 
and evolution of air masses and treat explicitly the inherent 
phenomena of atmospheric turbulence as well as other types 
of nonlinear atmospheric phenomena. For these predictions, 
the model has into consideration the roughness of the terrain 
as well as previous weather data. The model predictions are 
made daily starting at 00:00 UTC, with a time horizon of 76 
hours, for the years 2018 and 2019. The sampling frequency 
corresponds to 15 minutes. Lastly, these predictions result 
in a data set with the 30 atmospheric parameters shown in 
Table I, which are used to predict the power generated at a 
given time. 
 
 
 
 
 
 
 
 

Table I. - Atmospheric features initially considered 
 

 
 
4. Feature Engineering 
 
The single machine learning models are a set of models 
created to predict the power generated by a wind farm 
based on data generated by NWP models. The data-
modelling pipeline was decomposed into A-Exploratory 
Data Analysis and B-Feature Engineering (chapter 4), 
Models (chapter 5) and Ensemble Modelling (chapter 6). 
 
A. Exploratory Data Analysis 
 
Exploratory Data Analysis is used to evaluate and 
investigate datasets and summarize their main 
characteristics, often employing data visualization 
methods. 
 

 
Fig. 3. Daily/monthly average of power generated 

 
By analysing the data, shown in Fig. 3, it was concluded 
that the 2018 NWP data appears to be representative of the 
2019 NWP data, apart from March of 2018. 

 
Fig. 4. Pearson correlation matrix 
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Through an observation of the Pearson correlation matrix, 
depicted in Fig. 4, for all pairs of variables, it was possible 
to conclude that the power generated is strongly correlated 
only with the wind speed at 170, 100, and 30 meters. It is 
also possible to detect a potential problem, in which some 
of the explanatory attributes have high correlation. In 
addition, it was also created a wind rose graph between the 
direction of the wind and the energy produced and was 
concluded that if the wind comes from the northwest, there 
is greater intensity of wind speed, producing a larger 
amount of energy. 
 
B. Feature Engineering 
 
Feature engineering is a process of transforming already 
existing features into new ones to have a better problem 
description, decreasing the model error. From removing 
unnecessary features to adding new ones that represent the 
interaction between altitudes and, lastly, adding features to 
deal with the autocorrelation problem. Feature Selection is 
the first step of Feature engineering. Feature selection refers 
to the techniques that support the selection of features to 
use, removing features that do not contribute with any 
valuable information to our model or even harm the 
performance, which reduces the number of input variables 
in a dataset. Two different strategies are used to detect the 
variable contribution: i) Extreme Gradient Boosting 
(XGBoost) and ii) GAM with Auto Regressive (GAMAR) 
models. Even if both models agree on removing a certain 
feature, it is still important to analyse the effect of removing 
said feature on the error. If the error increases with the 
removal of the attribute, then it is not worth removing the 
variable and it should be maintained in the dataset, despite 
the results of the model. From repeating this process 
multiple times, it was possible to conclude that several 
features presented in our dataset were not contributing to the 
prediction, as initially speculated in the exploratory data 
analysis. In total, just by removing these features, our 
models improved, on average, 0.28% on the error. The 
removed features are shown in Table II. 
 

Table II. - Features removed and their impact on the error. 
 

 
 
Layers’ Interactions, the second step of Feature 
engineering, has the goal of correcting the existence of any 
possible outliers and modelling the turbulence. The layer’s 
interaction were applied for the wind speed, wind direction, 
and temperature at every consecutive pair of altitudes, with 
the following rationales: 
 

1) Wind speed: To calculate the wind speed 

interaction between consecutive layers , an 
approximation of the Shear velocity was used as 
shown in (2). 

 𝝍𝒊,𝒋 = ට
ห𝑾𝑺𝒊ି𝑾𝑺𝒋ห

𝝆
× 𝒅𝒊𝒔𝒕𝒊,𝒋  (2) 

In (2), WSi is the wind speed at the altitude i, ρ is 
the air density, and disti,j is the distance between 
altitudes. 

2) Wind direction: The wind direction interaction 

between consecutive layers  is calculated as 
in (3) and (4). 
 

 𝝓𝒊,𝒋 = ห𝑨𝒏𝒈𝒊 − 𝑨𝒏𝒈𝒋ห  (3) 
 

 𝚽𝐢,𝐣 = ቊ
𝟑𝟔𝟎 − 𝝓𝒊,𝒋, 𝐈𝐟    𝝓𝒊,𝒋 ≥ 𝟏𝟖𝟎

       𝝓𝒊,𝒋,              𝐈𝐟    𝝓𝒊,𝒋 < 𝟏𝟖𝟎 
  (4) 

 
In (3), Angi represents the wind direction at 
altitude i, in degrees, Angj represents the wind 
direction at altitude j, in degrees. 

3) Temperature: Lastly, the interaction between the 

temperature of consecutive layers  is given 
by the difference between both, as in (5). 
 

 𝝉𝒊,𝒋 = 𝑻𝒊 − 𝑻𝒋 (5) 
 
In (5), Ti represents the temperature at the altitude 
i, and Tj represents the temperature at the altitude 
j, both in Celsius degrees. 

 
Lag Features is the last step of Feature engineering. 
Bearing in mind that, past observations have a great 
influence on the future, they should be considered in any 
form in the prediction. A common strategy to solve this 
problem is to try to replicate an autoregressive component. 
However, instead of considering all past values, as is 
usually done by an autoregressive component, we will 
consider a window with a statistical summary of the 
interval. This type of feature is usually called lag feature. 

 

 
Fig. 5. Backwards and forwards lag features 

 
It was concluded that wind speed at 170 meters, 30 meters 
and sea level should have lag features, as well as the 
temperature and wind direction at 170 and 30 meters. The 
statistical measures used to describe these features were 
the mean; the standard deviation; the maximum and 
minimum value; the skewness, and the robust coefficient 
of variation with exception of the coefficient of variation 
being replaced by the phase of the angular momentum [3] 
for the direction features. The chosen window’ horizon 
was 6 hours for the backward and forward lag features, 
exemplified in Fig. 5. 
Lastly, lag features for the wind power generated were 
also created, however it’s used two different window’ 
horizons: half an hour and an hour. The only statistical 
measure used was the mean. It is important to reinforce 
that for the wind power generated, creating lag features are 
only based on previous observations. The models showed 
better results when the lag features for the target variable, 
the wind power generated, had a prediction horizon 

(𝜓𝑖,𝑗 ) 

(𝜙𝑖,𝑗 )

(𝜏𝑖,𝑗 )
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smaller than 6 hours. Thus, every algorithm tested has two 
versions: i) one for short term predictions, the prediction 
horizon smaller than 6 hours, where the model extrapolates 
the results and, ii) a second version for medium-term 
predictions, prediction horizon after 6 hours, in which case 
the model does not use these lag features. 
 
5. Single machine learning models 
 
After improving the dataset, various algorithms were 
evaluated. In total, six algorithms were used in this stage: 1) 
Persistence, 2) XGBoost, 3) Light Gradient Boosting 
Machine (LightGBM), 4) Support Vector Machine (SVM), 
5) Autoregressive Integrated Moving Average with 
Exogenous Variable (ARIMAX) and, 6) GAMAR. 
 

1) Persistence uses the last known value as the 
forecast for every future point, as shown in (6). 

 
 𝒚ෝ𝒕ା𝒌|𝒕 = 𝒚𝒕, 𝒌 ≥ 𝟏 (6) 

 
In (5), yt represents the real value of the power 
generated at t and 𝒚ෝt+k represents the predicted 
value of the power generated at the k-step ahead 
prediction. 

2) XGBoost implements machine learning 
algorithms under the Gradient Boosting 
framework. XGBoost tends to over-fit the data. 
Regularization, amongst other techniques, is a 
technique used to avoid over-fitting through both 
LASSO (L1) and Ridge (L2) regularization. 

3) LightGBM is an improved version of gradient 
learning framework based on decision trees and 
the idea of “weak” learners [4]. 

4) SVM aims to fit as many instances as possible on 
the decision boundary while limiting margin 
violations. The kernel function models the 
interaction between the features and the target 
variable. It was chosen a linear Kernel for this 
work. The feature vectors were normalized prior to 
feeding them to the SVM. 

5) ARIMAX is a model suitable to deal with the high 
autocorrelation of the variables due to its 
autoregressive component. Before the data is feed 
to the model the data is first standardized and after 
that a Principal Components Analysis (PCA) is 
applied to the data where we conclude that 30 out 
of 103 components explain more than 80% of the 
data variance, which was the minimum required 
for the PCA to be considered well applied. 

6) GAMAR fits a general additive model (GAM) [5] 
to the data while keeping an autoregressive part. 
Parameters in GAMAR are estimated by 
maximum partial likelihood using modified 
Newton’s method [6]. 

 
The metaparameters of these models were tuned using 
Optuna [7]. 
 
 
 
 
 

C. Models results 
 
After improving the NWP data, these models are trained 
with the 2018 data and then tested in the 2018 and 2019 
data. The models’ predictions in 2018 are used as the 
Ensembles’ base-learns and the models’ predictions in 
2019 is used to evaluate the models’ performance. The 
training aimed to minimize the NRMSE of production for 
the next 15 minutes. 

 

 
Fig. 6. All base-models results 

 
As seen in Fig. 6 models perform better in short-term 
predictions, however, the results are showing more 
discrepancy in the medium-term predictions. 
 

Table III. - Single ML results. 
 

 Average NRMSE 
Persistence 29.46 % 
XGBoost 12.51 % 
LightGBM 12.45 % 
SVM 12.62 % 
ARIMAX 16.86 % 
GAMAR 12.76 % 

 
Based on the results obtained, Table III, it is possible to 
conclude that for a model to obtain a good performance, it 
needs to be able to capture non-linear relationships 
between the various attributes and the wind power 
generated. For this reason, ARIMAX does not manage to 
obtain as good results as other models tested: XGBoost, 
LightGBM, SVM, and GAMAR. Thus, only these four 
models are considered for the Chapter 6. 
 
6. Combination of models 
 
The objective of combining the models developed in 
Chapter 5 is to continue improving the forecast capability 
in order to obtain an even lower error. 
 
A. Ensemble Modelling 
 
Ensemble models is a machine learning approach that 
combines multiple learners and synthesizes the results into 
a single prediction by using many different modelling 
algorithms or using different training data sets [8]. 
The next three models are a form of the ensemble strategy 
called Stacking. Stacking is an ensemble learning 
technique that combines multiple models via a meta-
model. The base-learners are learned in parallel and taken 
as new features to re-train a new learner, the meta-model. 
The meta-model inputs the predictions as the features and 
the target being the ground truth values in data and 
attempts to learn how to best combine the input predictions 
to make a better output prediction. 
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1) In Weighted Ensemble, a weight is associated with 
each model while ensuring the sum of all weights 
is equal to one. The forecast is the sum of the 
product of all weights with the respective model. 

2) The second model is designated Stacking or 
STCK. The meta-model is a Support Vector 
Machine for Regression Problems (SVR) with an 
radial basis function (RBF) kernel. Before the data 
is feed to the model the data is first standardized 
and after that PCA is applied to the data where we 
conclude that 1 out of 4 components were chosen 
[9]. 

3) Linear SVR is a Stacking of models. The 
motivation for using Linear SVR as a meta model 
instead of linear kernel SVR is because it has more 
flexibility in the choice of penalties and loss 
functions and works better with a large number of 
samples [10]. 

 
The next two models are a form of the ensemble strategy 
called Boosting. Boosting considers homogeneous weak 
learners but learns them sequentially in a very adaptive way 
and combines them following a deterministic strategy. 
Boosting is described as a stage-wise additive model. This 
is because one new weak learner is added at a time and 
existing weak learners in the model are frozen and left 
unchanged. 
 

4) Boosted Regression Tree (BTR) combines the 
strengths of two algorithms: Ada Boost and a 
Regression Tree. Ada Boosting is a meta-estimator 
used for performance improvement [11]. 
Regression Tree uses the tree representation to 
solve the problem in which each leaf node 
corresponds to a numeric value and attributes are 
represented on the internal node of the tree. 

5) XGBoost was explained in chapter 4. 
 
B. Ensemble models results 
 
The model was trained and tested in a dataset predicted in 
Chapter 5 with four attributes with the predictions of the 
models XGBoost, LightGBM, SVM, and GAMAR. 
Training was done with the data from 2018 and then was 
tested with the data from 2019. The training aimed to 
minimize the NRMSE of production for the next 15 
minutes. 
 

 
Fig. 7. All Ensemble results 

 
As seen in Fig. 7, models also perform better in short-term 
predictions. The results for medium-term predictions have 
less of a discrepancy. 
 
 
 

Table IV. - Ensemble models results 
 

 Average NRMSE 
Weighted Ensemble 12.18 % 
STCK 11.60 % 
Linear SVR 11.59 % 
BTR 12.60 % 
XGBoost 11.83 % 

 
Ensembling the weak learners made an improvement on 
predicting the power generated, Table IV. Linear SVR 
presents the best performance with an average NRMSE of 
11.59 %. 
 
C. Recurrent Neural Networks 
 
Recurrent neural networks (RNN) are a class of neural 
networks that are helpful in modelling sequence data, like 
time series, derived from feedforward networks.  
Because of its’ internal memory, they memorize essential 
aspects regarding the input, which allows them to be very 
precise at predicting the future. RNN can form a much 
deeper understanding of a sequence and its context 
compared to other algorithms. 
 

1) Data Preprocessing: The dataset is first 
normalized to prevent the network from 
ineffectively learning the problem. After that a 
PCA is applied to the data where we conclude 
that 1 out of 4 components. 

2) Layers: Keras is an open-source software library 
that provides a Python interface for the 
TensorFlow library [12]. In keras, the basic 
building blocks of neural networks are called 
layers. The same layers were used on each RNN 
and these are: i) Bidirectional layer; ii) 
TimeDistributed layer with a Dense layer of 
single output value to design a many-to-many 
RNN and lastly, iii) weight layer regularizer. 

 

 
Fig. 8. RNN structure 

 
In the RNN structure, as shown in Fig. 8, xi and yi are the 
values of each time-step, where 𝒙ሬሬ⃗  is the input, the jth 
window, and 𝒚ሬሬ⃗  is the output of the RNN of the same 
window. 
 
Three different types of RNN were used: i) Simple RNN, 
ii) Long Short-Term Memory (LSTM) and, iii) Gated 
Recurrent Unit (GRU). 
 

1) Simple RNN uses the previous information in the 
sequence to produce the current output. The 
training data was divided into 48h horizon 
windows to be feed to the RNN [13] [14]. 
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2) LSTM is a sequential network that allows 
information to persist. It can handle the vanishing 
gradient problem faced by RNN. LSTM has three 
gates: i) input gate, ii) forget gate and iii) output 
gate. The training data was divided into 48h 
horizon windows to be feed to the RNN [15]. 

3) GRU, similar to the LSTM, has two units gates that 
modulate the flow of information inside the unit 
having a separate memory cell: i) update gate and, 
ii) reset gate. The training data was divided into 
24h horizon windows to be feed to the RNN [16]. 

 
D. RNN Results 
 
The model was trained and tested in a dataset predicted in 
chapter 5 with four attributes with the predictions of the 
models XGBoost, LightGBM, SVM, and GAMAR. 
Training was done with the data from 2018 and then was 
tested with the data from 2019. The model was trained to 
minimize the NRMSE of production for the next 72 hours. 
 

 
Fig. 9. RNN results 

 
As seen in Fig. 9, the results of the RNNs are very similar 
to each other. While testing for different horizons and with 
different layers, the NRMSE results have shown a minor 
variation. These methods also show difficulty in predicting 
the first few time-steps and the last few time-steps. 

Table V. - RNN results 
 

 Average NRMSE 
Simple RNN 12.55 % 
LSTM 12.56 % 
GRU 12.45 % 

 
GRU presents the best performance with an average 
NRMSE of 12.45 %, Table V. In the end, the RNN 
performance does not outperform the ensemble models nor 
its’ base learners. 
 
7. Conclusion 
 
The objective of this project was to decrease the average 
NRMSE error by single ML methods (12.45%) and 
combining them to reduce even more the error (11.59%). By 
providing, a better wind power forecast the amount of 
operational reserves is reduced, decreasing the overall cost 
of system operation. The results obtained throughout the 
work demonstrate that it is possible to obtain an average 
error between 11% and 13% for medium-term forecasts. 
 

 
Fig. 10. All results 

 
As seen in Fig. 10, the error has almost always very similar 
behavior. In conclusion, the ensemble model Linear SVR 
showed the best results with an average NRMSE of 
11.59 %. The improvement of these models is still a work 
in progress, efforts are being put in action in order to 
further increase their performances. 
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