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Abstract. This paper addresses the control of a heat
exchanger placed in asolar water heating system and influenced
by external disturbances at plant output. Heat exchangers play
an essential role in industries that use renewable sources for
energy generation and water heating, i.e. geothermal, solar,
ocean, etc. One of the main control targets of such systemsisto
achieve a smultaneous and accurate control of some
temperatures. A multivariable (MIMO) model of the heat
exchanger of a solar plant, and a robust controller able to
govern the system despite the externa disturbances and loop
interactions are developed in this work. The MIMO
methodology for the non-diagonal controller design is based on
the Quantitative Feedback Theory (QFT).
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1. Introduction

In a society with increasing energy demand and
decreasing supplies it is necessary to develop the
potential renewable resources. For this reason and thanks
to the sdignificant scientific and technological
developments occurred in the last few decades, new
renewables, e.g. solar, bioenergy, geothermal and wind,
are emerging and are being the target of a great dea of
rescarches. As a consequence, thermal and power
generation industries sustained with these alternative
sources of energy are becoming very important lately.

On the other hand, heat exchangers play an essential role
in a wide range of applications in this kind of industries.
From geothermal plants to OTEC systems or solar
heaters, heat exchangers perform key duties in electricity
production or domestic heating by evaporating or
condensing working fluids. Due to the importance of
these devices, an accurate control of the output
temperatures is essential to work at full capacity and to
meet the industrial requirements.
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Heat exchangers can be considered as multivariable
systems because the aim is to control more than one
output temperature by manipulating several variables.
Due to this multivariable condition and the presence of
external disturbances and model uncertainties, a robust
methodology based on Quantitative Feedback Theory is
proposed in here to improve reliability and control
performance in terms of disturbance rejection.

The paper addresses the problem of external disturbance
rejection at plant output in a solar water heating system
described by a 2x2 transfer matrix [1]. The desired
specifications of the closed loop system (disturbance
rejection and robust stability) must be achieved despite
the severe coupling and the large parametric uncertainty
of the process.

Different solutions were proposed in the literature to deal
with different variations of this problem [2], [3], [4], [5],
[6], [7]. The approach applied in this paper [8] integrates
previous techniques [6], [9], [10] and designs a fully
populated controller for multivariable systems.

The remainder of this paper is organized as follows. Next
section presents the mathematical model of the heat
application, followed by the required design
specifications. Third section intends to review briefly
those principles of the QFT methodology that are
considered particularly useful. The following section
goes into detail on the procedure to design a non-
diagonal controller for external disturbance rejection.
This section aso includes a complete description of the
system transmission matrix T, which relates the outputs
(y) to output externa disturbances (d,). Furthermore
guidelines for the design of the controller are provided.
Section 5 is the point at which a controller for the heat
solar process system is designed. Afterwards, in section
6, the simulation results show the performance of the
designed fully populated controller comparing to a
diagonal one. Finadly, the most relevant ideas of the
paper are summarized.

RE&PQJ, Vol. 1, No.2, April 2004



2. Model of a heat exchanger of a solar
water heating system

This section presents a solar thermal energy application.
It treats the use of solar heating for domestic hot water
supplies. Description of the system, components and
design consideration are outlined.

The basic elements of solar water heaters can be
presented in several configurations systems. Thereis very
often a heat exchanger between the collector and a
storage tank, as shown Fig. 1, when antifreeze solutions
are used in collectors of solar industrial processes.

The mathematical models for the key components in
solar energy systems, i.e., collectors, storage units and
heat exchangers are developed [1]. The manipulated
variables to the whole model are g, and g; (collector and
storage pump volumetric flux rates). The controlled
variables are Ty, To, temperatures of the storage tank and
at the exit of the collector respectively.

collector

Collector

o pump

q.
Heat Exchanger

Figure 1 — Schematic of a solar water heating system

A detailed analysis of a solar process system is a
complicated problem. Nevertheless a simplified analysis
yields very useful results when focusing on control
purposes. These results show the important variables,
how they are related and how they affect to the control of
the process.

The collector shown in Fig.1 heats an antifreeze solution

(glycol). It is connected to a water storage tank through a
heat exchanger.
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The system is modelled by the following expressions,

Qu(t) =g Cpe (To(M-Tim) =

=A.F [E®)-U. Mio-Tam) ™)
Qe (t) =& fing ey (To(t) ~Te(1)=L1 () @
To() =Ti (1) =€ (To (0 - T (1) @3)
e = @

= MeCpc (o0 =T ©) = Uy [T (0 - To(0)- L ©
(See the nomenclature appendix at the end of the paper)

The above set of equations describes the performance of
the solar process. Eq.(1) models the collector. Egs.(2) and
(3) are related to the effectiveness of the heat exchanger.
The storage unit is defined by Eq.(4).

A linearized model is then obtained around the operating
point, Q7,Q2, TP, TS. The final expressions are
combined and trandated into the s-domain using Laplace

transform to calculate the controlled variables (T, and T,)
in terms of the manipulated ones (Q. and Q).

AT () O_ 11(9)  Pp12(9) OAQ ()T

= 5
BT Ba® pa©@bR©H ©
where,
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P11(8) = 208 s+ (6)
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P12(9) SA0L(9) s+ (7)
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P21(s) = AQS s+1 (8)
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P22(s) = AQL(S) o 9)
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Y =ed(T? -TJ)
Z=4U,(l-¢)-£dQ?
M =U; +f U e-edQ?
a=p¢CpVy

b=pcCpc

d=p¢Cpt

f=A.F

Equilibrium point:

QP =0.864 10° m*s*; Q2 =0.00115 m*s™;

T2 =35°C; T3 =53°C;

It must be noted that each transfer function of P is

described by a set of plants that present the natural
parametric uncertainty indicated in Tablel.

TABLE I. - Coefficients of parametric uncertainties

Parameter Min Max
€ 0.4 0.6
U woC' m?] 6 8
A ] 4 10

A disturbance could be a change in feed temperature or
rate, a change in pressure or a variation in product
demand. They are variables that fluctuate and cause the
process output (temperatures T; and T,) to move from the
desired operating value. The aim of the paper is to
enhance the disturbance rejection performance in the
MIMO system that describes the solar process so that
disturbances will be acritical issue in the design.

Performance specifications:

Once the process model is developed, the desired closed-
loop performance specifications are determined:

= Robust stability in each channel:

Li(s)

————1<1.2
1+L;(9

i=1,2 (10)

where Li(s)=pii(9)gii(s)

This means at least 50° lower phase margin and at least
1.833 (5.26 dB) lower gain margin.

= Reduction of coupling effect as much as possible.
= Robust disturbance rejection at plant output so that,

BIICK <0.1, w<0.05rad/s, i=12 (12)
doi ()

A MIMO methodology based on QFT is proposed to

cope with al the considerations described above and to

obtain arobust controller.
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3. QFT Theory

QFT (Quantitative Feedback Theory), has been and is
one of the most successful robust control theories applied
to the rea world problems [9]. It is an engineering
method that uses frequency domain concepts to satisfy
performance specifications and handle plant uncertainty.
This method relies on the observation that the feedback is
needed principally when the plant presents uncertainty or
when there are uncertain inputs acting on the plant.

QFT, first introduced by Isaac Horowitz [11] in 1959, isa
control system design technique, a frequency domain
method that uses the Nichols chart in order to achieve a
desired robust design for plants having structured
parameter uncertainties.

Its main objective is to design a simple, low-order
controller with minimum bandwidth that satisfies
performance specifications despite the variations in the
model or the presence of disturbances. (For more
information see [12], [13], [6], [14], [15])

Input
disturbances

Output
disturbances

do

PREFILTER

HIA
[

SENSOR
Figure 2.- 2 DOF Feedback system

4. Rejection of external disturbances at
plant output in uncertain MIMO systems

The Quantitative Feedback Theory (QFT) is now applied
to design a fully populated matrix controller to attenuate
the effect of the external disturbances that affect the solar
system presented in the previous section.

A sequential design methodology for non-diagonal QFT
controllers [6], [8], [10], is applied to reject the
disturbance specifications established, taking into
account the reduction of interactions among loops.

Consider a n x n linear multivariable system like the one
shown in Fig.2. The external disturbances at plant output
is represented by d,. The closed loop transfer function

matrix from external disturbances at plant output d, to
the output y is called Ty,q and it is obtained from,

y:(I"'PG)_ldo:TY/do do (12)
Hence,
Ty g0 =@+P G)™ (13)

The expression of Ty,q, - EQ. (13) - is the starting point
of a mathematical development that lead to solve this
disturbance rejection problem [8].
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The plant inverse P! will be denoted as P* = [ pj;] and

it is partitioned to the formP” = A + B, where A and B

are the diagona pat and the balance of P,
respectively. In the same way, the fully populated
controller G = [g;] is divided into two terms; Gy and G,
which represent the diagona part -subscript d- and
balance -subscript b- of G.

Substituting these matrixes in Eq. (13), operating and
rearranging it, yields the next expression which describes
the n x n matrix

Tyio=(I+A"G)" +

+(1+A Ge) ' A [B=(B+Gp Tyi)] (14

By inspecting Eg. (14) a diagonal term and a non-
diagonal term can be found.

i. Diagonal term Ty /go.q

Tyigod = (I + A" Gq)™t (15)
where
O pf. O
Tyidod= [taoii] = B—50 (16)
B0ii + pii B

Asillustrated in Fig. 3, this diagonal term is equivalent to
aset of n MISO systems.

dOi

0 &ii v » ]; —Vyi
- Dii

Fig. 3.- i-th equivalent MISO system. 1 <i<n

ii. Non-diagonal term Ty,go0p

Tyigob = [+ A" Gg)* A™ [B— (B + Gy)] Tyjao 17)
where,
Cdo~ij
Tyidob= [taoil] = — (18)
gii + Pii

The last term in square brackets in Eq. (17) is the only
part which has a non-diagonal structure. Since it depends
on the balance of the controller and plant, it comprises
the coupling and represents the interaction between
loops. Consequently this term will be called the coupling
matrix for the rejection of external disturbances at plant
output and will be denoted as Cy,.

Cdo = [ c(lo—ij] =B - (B + Gb TY/do) (19)

Fig. 4 presents the block diagram of thei™ control loop.
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n
d;= lzchoij do;

0 Ui 1

> i .
Dii

Fig. 4.- Equivalent MISO regulator with disturbances at
the plant input and output. 1 <i<n

s

Each element of the coupling matrix obeys,
* m *
Cdo-ij =Pij(1-3ij) = 3 (Pik +9ik) tij (1-8i) (20)
k=1
where §; isthe delta of Kronecker defined as,

[Bki =1 k=i

8.: 21
ki ki:O«:»kii (21)

Now, one hypothesis and two simplifications are stated in
order to make the quantification of coupling effects
easier.

Hypothesis H1: The diagonal elements t; in Eq. (15) are

assumed to be much larger than the non-diagonal ones t,

\ tjj (p?}+gij )\ >>\ tkj(pfk+gik )\ forkzj (22

Simplification S1: Applying Hypothesis H1, Eq. (20) can
be rewritten as,

Cainij =ty (P+0y) i %] (23)

Simplification S2: The elements t; can be replaced using
the expression obtained from the equivalent system,
[7a0-i] In Eq. (16).

Applying them, the final expression of the coupling
effect can be written as,
- pjj (P * i)

! (Pjj+ 9jj)

(24)

Note, that every uncertain plant pi*j is represented by the
following family,

{F’?J}:pi*jN(“Au)

OSAij SAij
fori,j=1,...,n

(25)

Where p,"is the nomina plant and A, the non

parametric uncertainty radii.

In order to find out the optimum non-diagonal controller,
Eq. (24) is made equal to zero and a nominal plant that
minimises the maximum non-parametric uncertainty radii

A p, inEq. (25) is chosen,
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«N
opt _ . P
9 =95 N

Pjj

(26)

Finally, the minimum and the maximum achievable
coupling effects are computed using an analogous
procedure to that presented in the previous section.

f_N
i (b -2)

‘Ci' ‘ L _OPT =
! gll‘gij (|_+Ajj)p*ij+g

In the same manner, the maximum coupling effect
without any non-diagonal elements in the controller
*N
pij

expression is,
‘Cij ‘gij=0 - (1+Ajj)p’jch+gjj (H-Aij)

The design method is a sequential procedure closing
loops [7], that uses fully populated matrix controllers.
The end of this section outlines the step that must be
followed in order to complete the whole procedure.

@)
i

(28)

In order to use the design equations developed in the
preceding section, firstly it is necessary to fulfil the
Hypothesis H1. And secondly, another Hypothesis H2 is
stated.

Hypothesis H2: The plant P and its inverse P* should be
stable and do not have any hidden unstable mode. Thisis
only a sufficient condition to guarantee the stability of
the system. Consequently, the designer must pay close
attention to systems with non minimum phase or unstable
elements[7], [16].

Related to the stability problem and taking into account
the analyses found in several works [17], [6], [18] it can
be settled that it is necessary and sufficient that the plant
of each successive loop is stabilised.

In addition, before starting the sequential procedure, it is
advisable to analyse the effect of interactions in the
system and identify input-output pairings using the
Relative Gain Array (RGA), [19]. Afterwards, matrix P’

is rearranged so that (pil)'1 has the smallest phase

margin frequency, ( p}z )" the next smallest phase margin
frequency, and so on, [6].

Then, the design technique, composed of n stages, as
many as loops, performs the following steps for every
column of the matrix controller G.

Step A: Design the diagonal element of the controller gy

for the inverse of equivalent plant described in Eq.(29),
using a standard QFT loop-shaping method, [13], [6].
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i <= -

) QD?(i-l)] k—l;" [gi(i-l)] |§—1) ﬁpzi-l)i] k-1F [g(i —1)i] k_lﬁ

lpzi -1 i -1)J k-1F [g(i )i -1)] k-1

i>k; [P*] ke =P (29)
Eq.(29) represents the equivalent open-loop transfer
function of the channel i"™ assuming the previous ones
have been closed. Note that the expression depends on
both diagonal and non-diagonal elements of the
controller.

Step B: Design the (n-1) non-diagonal elements gix (izk, i
= 1,2,...n) of the k™ controller column, minimising the
coupling Cqo.ix described in Eq. (24) and applying the
optimum non-diagonal controller equation Eq. (26).

5. Controller design for a heat exchanger of
a solar water heating system

The previous methodology will be applied to the solar
water heating system described in section 2 to design a
robust controller which copes with the external
disturbances at plant output stated formerly.

First of al the RGA (Relative Gain Analysis) [19] is
calculated. Computing it for more than 600 plants
generated due to uncertainty, the results show that the

best possible pairing are: |_Tt° —Q?“_Tg —Q8J.

Design Procedure:

Step A.1: Standard QFT loop-shaping for i
P11

_ —0.00025-1.2[107°
911 (9) = >
s“+0.6s

(30)
Step B-1: By substituting in Eq. (27) the optimum non-
diagonal controller results,

0.001
s+5

g21(8) = (31)

Step A-2: Once the first column (gy; and gp;) has been
designed, the equivalent plant of the second channel Eq.
(32) iscalculated.

[ « e] _[ . ] (l_p;1J1+ [92]] 1)('?12]1‘* [912] 1)
P22 |2= [P22)1~ ] (32)
|_p11J 1t [91]] 1
Now, the diagona controller g, for *ie using a
P22
standard QFT loop- shaping method is,
-0.06s—-0.006
On(9= " (33)
s°+7s
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Step B-2: Design g, from Eq. (27)

-0.001(s+0.005)
<+0.2

g12() = (34)

6. Results

Simulations are necessary in order to have confidence in
the calculations developed in the paper. They provide a
wealth of information about the plant behaviour.

The transient responses of the closed-loop system to
external disturbances at plant output in the first loop are
shown in Figs. 5 and 6. In case (a), a fully populated
metrix  controller designed with the described
methodology is implemented, whereas in case (b) an only
diagonal classical controller is applied. Att =400 sec., a
unit step disturbance d; is added at plant output y;. As
can be seen in Figs. 5 and 6, the closed-loop response to
the disturbance is much more satisfactory in the case (a)
that is to say, the non-diagonal controller.

| | |
| | |
. I I I
390 395 400 405 410 415
Time (seconds)

(a) Non diagonal MIMO QFT controller

| |
| |
. I I
390 395 400 405 410 415 420
Time (seconds)

(b) Classical diagonal controller

Figure 5.- Response y; of the 2x2 MIMO system with a
disturbance at plant output in the same channel.
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| | | | | | | |
o | | | | | | | |
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| | | | | | | |
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| | | | | | | |
| | | | | | | |
| | | | | | | |
e e e e A e e M
| | | | | | | |
| | | | | | | |
Pt 1 L. L

0.
390 395 400 405 410 415 420 425 430 435
Time (seconds)

(8 Non diagona MIMO QFT controller

0.
390 395 400 405 410 415 420 425 430 435
Time (seconds)

(b) Classical diagonal controller

Figure 6.- Response y, of the 2x2 MIMO system with a
disturbance at plant output in first channel.

Figures 7 and 8 show the transient responses of the
closed-loop system to external disturbances at plant
output in the second loop with a fully populated matrix
controller (a) and with an only diagonal controller (b)
respectively. At = 400 sec., a unit step disturbance d, is
added at plant output y,. The results yield that the closed-
loop response to the disturbance input is better, once
again, with afully populated controller.

15

14 - -

13— —

12— -

11— -

yl

09— —

08~ ——

T T T

o7L—— 0w
390 395 400 405 410 415 420 425 430 435
Time (seconds)

(8) Non diagonal MIMO QFT controller
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11
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0.9 - —

08— —

T T I

o7L—— 0w
390 395 400 405 410 415 420 425 430 435
Time (seconds)

(b) Classical diagonal controller

Figure 7.- Response of the first channel (y;) of the 2x2 MIMO
system with a disturbance at plant output in the second channel.
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| | | | | | |
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| | | | | | |
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| | | | | | |
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| | | | | | |
| | | | | | |
| . [ | | | |
1 i | T T i i i i
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(a) Non diagonal MIMO QFT controller

I I I I I I I
2k — -4 - — -+ -—H- -k - -4 - ——+ - —
I
I
|

|

|

| (

I I

00 405 410 415
Time (seconds)

(b) Classical diagonal controller

|
|
|
|
|
|
. 1
390 395 A

Figure 8.-Response of the second channel (y,) of the 2x2
MIMO system with a disturbance input in the same channel.

The diagona controllers used to compared with are two
classical structures (Pl+filter) so that,

-0.000533s-8M107°

91(8) = (35
- s% +8s
-0.0057s+ 0.00057
922(8) = > (36)
s~ +10s
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7. Conclusions

This paper discussed the control of a heat exchanger placed in a
solar water heating system and influenced by externa
disturbances at plant output. Due to the multivariable condition
of the heat exchangers (severa temperatures must be controlled
with several manipulated variables) the control strategy selected
was a robust methodology based on QFT. The complete design
procedure was described and applied.

The approach was proven to work well for the solar application
showed. The controller was found effective in achieving given
specifications. It not only copes with plant uncertainties but also
enhances the rejection of external disturbances. Moreover, the
controller attenuates successfully the coupling between the
control loops.

Some significant simulation results were presented in the paper.
For the solar system, the MIMO methodology gives better
control than classical diagonal controllers.

The preceding results provide preliminary indications of the
feasibility of the proposed theory to reject disturbances at plant
input not only in solar processes. Due to the generality of the
design method, it is applicable not only to solar processes but
also to many industrial heat exchangers with only changing the
manipulated and control variables.
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Nomenclature

Me =p¢ dc =Glycol flow rate [Kgs™]

m; =p; q; =Water flow rate [Kgs']

P = 1094 Kg m™ =Glycol density

p; =1000 Kg m*® =Water density

dc =0.00115 m’s*

q; =0.864 10° m’s*

Cpe = 3850 JKg™ °C™ = glycol specific heat
Cpt =4190 JKg™* °C™ = water specific heat

V; = 0.1 m*= Volume of water in the tank
€=[0.4-0.6] = heat exchanger effectiveness
U, =[6-8] wm?°eC™" = overall loss coefficient
U, =2500 w °C™ = overall heat transfer coefficient area
E = solar radiation

Fr =0.8

A =[4-10] m? = collector area
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