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Abstract. In this paper a prototype of the electrical part of a
variable speed wind turbine is considered, equipped with a
permanent magnet synchronous generator. The modelling of the
generator and power electronics interface is checked with
measurements realised in the prototype under both steady state
and dynamic conditions. Measurements as well as control
functions are performed by using a microprocessor. The
outcome of the simulation and experimental work are actually
utilised in the development of a 25 kW wind turbine, in the
frame of a research project.
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1. Introduction

The control of wind turbine systems is a complicated task
due to the stochastic nature of available energy by the
wind. Moreover often conflicting requirements are
involved, such as the low cost and reduced stresses [14],
on the one hand, and the good output power quality and
dynamic characteristics on the other [9],[10]. In this
paper variable speed wind turbines are considered,
equipped with permanent magnet generators [7],[8]. The
examined wind turbines are multi-polar in order to avoid
switch-gears, exhibiting the well-known weight and
reliability problems [6].

In order to achieve variable speed operation, a power
electronics converter stage is necessary to connect the
generator to the grid [1],[2]. The system analysis in such
cases involves models for the generator [3],[4],[5], the
static converter [2],[12] and the grid [9].

In this paper a 2 kW prototype of the electrical part of
such a variable speed wind turbine is considered,
equipped with a 24 pole permanent magnet synchronous
generator. The modelling of the generator and power
electronics interface is presented and checked with
measurements realised in the prototype, both in the
steady state and in dynamic conditions.

Measurements as well as control functions are performed
by a microprocessor.

The outcome of the simulation and experimental work
are actually utilised in the development of a low cost 25
kW wind turbine, in the frame of a research project
funded by the Greek Secretariat for Research and
Technology.
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Fig. 1. Subsystems of the electrical part of a typical permanent
magnet generator variable speed wind turbine system

2.  Subsystems and Modelling

The basic components of a variable speed wind turbine
system are shown in Fig. 1. In this figure, it may be noted
that there is no gearbox to increase the speed of the
generator rotor. This is due to the machine multiple pole
structure, in order to achieve reasonable electrical
frequencies for low rotor speed. In the case considered
100 poles are needed (100 rpm) for the 25 kW sized
machine while 24 poles (400rpm) were adopted for the
prototype.

The static converter shown in Fig. 1 consists of an
uncontrolled 3-phase diode rectifier, a DC/DC boost
converter, a 3-phase PWM voltage source inverter and
possibly a step-up transformer.

A. Aerodynamic part and control reference

Aerodynamic analysis of the wind turbine blades
provided the characteristics shown in Fig.2. The
continuous curves show variations of the rotor torque
with rotor speed, for a given wind speed.
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Fig. 3. I-V characteristics of the rectified output of the
synchronous permanent magnet generator

To ensure accuracy, a three phase equivalent circuit has
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been used together with a rectifier and a resistive load,
and both measured and simulated waveforms have been
compared. The circuit illustrated in Fig. 4 allowed for
both fundamental and higher harmonics analysis.
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Fig. 4. Three phase equivalent circuit used in all simulations
of the permanent magnet synchronous generator

The case of low load condition has been simulated and
the computed results by the different models are
compared to measurements. The measured time
variations of the phase current and voltage are shown in
figures 6c and 7c, respectively. Both current and voltage
waveforms are distorted due to the reactive power effect
of the rectifier.

The simulated results by the fundamental component
model for the phase current and voltage in the machine in
this  case are shown in figures 6a and 7a, respectively.

Fig. 5. Reduction of fundamental electromotive force to
match rms electrical values in fundamental component model
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Fig. 6: Phase current of the permanent magnet synchronous
machine at low load conditions

              a: simulated by the fundamental component model
              b: simulated by the higher harmonics model
              c: measured

While the simulated current is in very good agreement
with the measured one by using this model, the voltage is
not represented properly. This implies that fundamental
component model cannot be very accurate in voltage
prediction as it neglects the higher harmonics.

Higher harmonics model is in very good agreement with
the measured waveforms for both phase current (figure
6b) and voltage (figure 7b). In these figures, even the
spikes due to diode recovery are efficiently represented.
At high load conditions the current has less higher
harmonic content but the voltage is even more distorted.

a

b

c

Fig. 7: Phase voltage of the permanent magnet
synchronous machine at low load conditions

a: simulated by the fundamental component model
b: simulated by the higher harmonics model
c: measured

Higher harmonics model provides simulated waveforms,
which are almost identical to the measured ones.
Furthermore, this model needs no adjustment of
electromotive force’s amplitude to represent efficiently
rms values, and can be easily used for lower machine
speeds.

On the contrary the results in fundamental analysis
showed the need for reduction of electromotive force to
match rms electrical values. Fig. 5 shows the amount of
reduction in full speed operation.

No load

Low load

No load

Low load
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Fig. 8. Speed control system block diagram

B. Mechanical part

In the case of the simpler representation of the
mechanical part by a concentrated mass with moment of
inertia J rotating at angular velocity ωr, the governing
equation is:

dt
d

P
JTT r

em
ω






=− 2                         (1)

where P is the number of poles, Tm is the mechanical
torque on the shaft and Te the electromagnetic torque

In order to obtain a control without oscillations, a low-
pass filter must be included in the rotor speed feedback
path of the control, as shown in Fig. 8. Its purpose is to
attenuate speed oscillations, which otherwise would be
reflected on the generator torque, degrading the output
power quality and contributing to the variability of the
mechanical torque. Thus a convenient selection of Tf is
very important [7].

3.  Control System and Measurements

After constructing the circuits and predicting the
electrical behaviour, a control program is needed to
evaluate the data measured and act as necessary to bring
the system to the desired working point [11]. In our case
two loops are working: A current control loop associating
the reference torque-speed characteristic to a convenient
generator current - speed characteristic as shown in Fig. 9
has been introduced.

f

VC

I1

D1
(PWM1)

Low pass
filter
τ = 9250μs

(95%)

Σ

K1(I1-I1΄)

Control reference
Current -- speed

I1΄

I1 = E(f)/RG + (D1-1)VC/RG
ΔI1/ΔVC = (D1-1)/RG [1-exp(-tRG/L)]
ΔI1/ΔE(f) = 1/RG [1-exp(-tRG/L)]
ΔI1/ΔD1 = VC/RG [1-exp(-tRG/L)]

Fig. 9. Schematic diagram of synchronous generator
current -speed control subsystem
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Fig. 10. Schematic diagram of capacitor voltage -loading
control subsystem

Moreover a voltage - loading control loop has been
adopted illustrated in Fig. 10.

The current control loop draws monitors the electrical
power from the generator in order to achieve the correct
combination of power and electrical frequency
corresponding to the optimum operation of the
aerodynamic part (reference in Fig. 2). It is a PI
controller with a low pass filter and a non-linear
reference.

The power drawn from the generator charges the filtering
capacitors. The voltage control loop takes care of
monitoring the accumulated power in the capacitors to
the load.

As the capacitors are charged, their voltage increases.
This PI controller shown in Fig. 10 filters the
measurement and compares the result with a pre-defined
constant. Then capacitors are discharged through the load
adjusted by a PWM controlled IGBT.

The program consists of two branches as shown in
Fig. 11: the main program and automatic control. In the
main program the user may review measurements and
alter state variables.

BEGIN

MAIN
PROGRAM

AUTOMATIC
CONTROL

‘C’

‘R’

PERIOD
COUNTER

Fig. 11. Flow chart of microprocessor program
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Fig. 12. Experimental set-up showing the 2 kW permanent
magnet synchronous machine prototype.

By pressing the ‘C’ key on the PC keyboard one may
start the automatic control, where the two aforementioned
loops cooperate and monitoring is disabled due to speed
problems. Special care is taken at extreme circumstances,
i.e. in case of an over-voltage condition.

4. Results and Discussion

The experimental set-up comprises the permanent magnet
synchronous generator prototype consisted of 24 poles,
illustrated in Fig. 12. The shaft torque is controlled by
using a dc machine torque-meter simulating the
aerodynamic part of the wind- turbine. The maximum
rotating speed adopted for the experiments was 400 rpm.

T=3.5kgm and f=64Hz
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Fig. 13. Measured steady state system ripples (capacitor
voltage and generator current for 3.5 kg.m torque and

64 Hz frequency)
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Fig. 14. Simulated electromechanical time response for
step up wind speed variation

This system enables also dynamic analysis by applying
convenient torque steps through appropriate control of
the four quadrant converter supplying the dc torque-
meter.

Figure 13 shows the capacitor voltage (Channel 1 -
550V) and generator rectified current ripples (Channel 2 -
5A) at steady state. This figure illustrates the very good
steady state characteristics of the system.

The dynamic behaviour of the system is of equally great
importance. The simulated time responses for the rotor
angular velocity ωm, mechanical torque Tm, electrical
Torque Te and generated power Pe, in case of a step up in
wind speed Vw are shown in Fig. 14. This figure shows
that the time constant involved is approximately 2
seconds, which is in good agreement with the time
responses of the measured capacitor voltage and
generator current for a step increase in rotor torque, given
in Fig. 15.

T:1.5kgm->1.87kgm
and f:41Hz->56Hz
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Fig. 15. Measured system time response for step up torque
(capacitor voltage and generator current time variations)
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Fig. 16. Simulated electromechanical time response for
step down wind speed variation

The agreement between simulated and measured time
responses can be observed in Figs. 16 and 17 showing the
same results in case of step down wind speed variation.

5.  Conclusion

The design, construction and testing of a control system
for synchronous permanent magnet generator wind
turbines has been presented. This system ensures
produced power optimization as well as overspeed
protection in case of high wind speeds. Its performance
has been checked by means of a 2 kW experimental set-
up. The proposed system provides excellent steady state
characteristics and adequate time response to step torque
variations.
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