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Abstract. Small PV plants are frequently not equipped with a 

meteorological station, that is decisive to monitor the energy 

performance of a PV plant and to detect low-intensity anomalies, 

as premature ageing, before they become faults. The paper 

proposes a methodology for PV plant not equipped with a weather 

station and it is based on a violin plot, that is a statistical tool that 

integrate information from box plot and histogram. In absence of 

environment parameters, the monitoring is done, by comparing 

each other the energy performance of the arrays constituting the 

PV plant, that should produce the same environment condition 

affects all the arrays. The methodology is applied to a real 20kWp 

PV plant, studying the energy performance for different energy 

datasets. 
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1. Introduction 

 
The energy produced by a photovoltaic (PV) plant depends 

mainly on the solar radiation and the air temperature, which 

affect the maximum power point. Since the PV module 

captures the solar radiation and produces the electrical 

energy, it is a very important component of a PV plant; so, 

its electrical behaviour is always directly or indirectly 

monitored [1]. Defected modules can be also detected by 

not destructive techniques [2-7] that can utilize unmanned 

aerial vehicles [8]. Other strategies can be used to monitor 

the energy performance of the entire PV plant; for example, 

some researchers propose methods based on statistics [9] or 

signal processing [10]. On the other hand, low-intensity 

anomalies produce small variations in the electrical 

variables, and their detection is complex. Small PV plants 

constituted by more than one array are said multi-arrays [9] 

and are usually equipped with a basic monitoring system 

that does not acquire the environment parameters. In this 

case, to evaluate the energy performance of the PV plant is 

not trivial and Photovoltaic Geographical Information 

System (PVGIS) [11] can be a useful tool for a rough, but 

insufficient, preliminary analysis (Fig. 1). In these cases, 

this paper proposes the use of a synthetic graphic 

representation, known as violin plot, which is based on 

several statistical tools and can monitor the operation of a 

multi-arrays PV system not equipped with a weather station. 

In fact, even if the measured data depend on the 

environmental conditions, the proposed supervision 

strategy does not depend on them, because it is based on 

the comparison among the energy values of the PV arrays. 

 

 

 
Fig. 1. Photovoltaic Geographical Information System (PVGIS). 

 

2. Methodology 

 

The violin graph [12] shows the distribution of the 

numerical data and allows comparing the distributions 

between multiple groups. Violin plot is the combination of 

a box plot and a Kernel Density Estimation (KDE). For a 

better understanding of the usefulness of a violin plot, box 

plot and KDE are separately studied. Fig. 2 reports some 
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characteristic examples of violin plots, based on different 

distributions. For example, the fourth diagram is the violin 

plot of a bimodal distribution, as evidenced by the two 

peaks. The internal part is just the box plot. In fact, the thick 

black bar into each violin graph represents the interquartile 

range, i.e., from 25th to 75th percentiles, while the thin 

black line represents the rest of the distribution, and the 

white dot is the median. Extreme thin lines are outliers. 

Each example contains these values. Therefore, the violin 

graph contains information of a box plot inside, and further 

information on the edge. 

In fact, the distance between the curve and the vertical axis 

provides information about the data points contributing to a 

certain parameter value, even if it is not the histogram, but 

the KDE. To better understand the difference, Fig. 3 reports 

a histogram and the associated superimposed KDE, which 

is a smoothed depending on the values of the data point of 

the histogram. In detail, KDE is a curve with a small area 

around each data point. The kernel function defines the 

shape and the width of the area, centered or not on the data 

point; the width is said bandwidth of the kernel. Therefore, 

the KDE is based on each data point but is characterized by 

a chosen kernel function, due to the shape and width. By 

changing the kernel function, different curves superimposed 

on histogram can be carried out, even if the histogram is 

unchanged (Fig. 3). The greater the bandwidth, the 

smoother the curve.  

From a mathematical point of view, let the series {x1, x2, ..., 

xn} be n observations of a population X with an unknown 

probability distribution function f(x). Kernel estimate of the 

original f(x) associates each data point xi a function 

K(x,xi,h) called Kernel Function (KF), such that [13]: 
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being h the bandwidth, and K(x,xi,h) a bounded function for 

all real x, i.e.:  
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Some common KFs are the following: 
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being (3) the Gaussian KF and (4) the Epanechnikov KF. 

For the case study in this paper, both of them were used, and 

the results were similar. So, only the diagrams based on 

Gaussian KF are reported.  

If the arrays constituting the PV plants are identical for 

typology and installation conditions, they must produce the 

same energy in the same period, because partial random 

shadings offset each other. In fact, environmental condition 

affects equally the arrays during a medium period, being the 

arrays close. For this reason, by applying the violin plot to 

the energy datasets of all the arrays, the same results should 

appear, if no anomaly is present, i.e., all the violin plots 

must be almost identical. When this does not occur, a fault 

or an anomaly is already present in the PV plant. 

Consequently, by comparing the violin plots of the 

energies produced by the strings constituting the PV plant, 

it is possible to monitor the energy performance of the PV 

plant and to detect the presence of anomalies. The strategy 

will be applied to the energy datasets of a real PV plant, 

described in the next section. 

 

 
  

Fig. 2. Examples of violin plot: symmetric, skewed, with outlier, and 

bimodal. 

 

Fig. 3. Hystogram with a KDE. 

 

 

3.  Case study  
 

The methodology was applied to the energy datasets a real 

20kWp PV plant, constituted by six strings. It is in the 

south of Italy. Table I and II report the parameters from 

the manufacturer datasheets of the PV module and 

inverter, respectively. A complete description of the whole 

PV plant is available in [9]. For our scope, it is important 

to know that the datalogger stores six values for hour, 

therefore 144 samples for day and for array are available.  

TABLE I.  SPECIFICATIONS OF THE PV PLANT  

To t a l  n u mb er  o f  mo du le s  1 3 2  

Ty p e  an d  man i fac tu re r  So l t e r ra  1 5 0 W  

Ce l l s  mo n o c ry s t a l l i n e  

Max  p o wer  [W]  1 5 0  

Min .  po wer  [W ]  1 4 0  

Vo l t ag e  a t  t yp i ca l  po wer  [V ]  3 4 .7  

Cu r ren t  a t  t y p i ca l  p o wer  [A]  4 .3 2  
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Op en  c i rcu i t  v o l t ag e  [V]  4 3 .2  

Sh o r t  c i rcu i t  cu r ren t  [A]  4 .7  

NOCT [ °C ]  4 8 °  ±  1  

Warran t ed  Mo d u le  e f f i c i en cy  (%)  1 1 .8 0  

Temp era tu re  co e f f i c i en t  v o l tag e  β  -1 5 3  mV/°C  

Temp era tu re  co e f f i c i en t  cu r r en t  α  +0 .9 0  mA/°C  

Temp era tu re  co e f f i c i en t  p o wer  γ  -0 .4 0  % / °C  

 
The preliminary analysis based on the whole yearly energy 

dataset (Fig. 4) allows to understand if great criticalities are 

present. It results that the shapes are similar, and the median 

values (white dots) are almost identical. Therefore, great 

criticalities are not detected, even if the maximum values 

are different. Particularly, arrays #1, #3, and #6 show the 

maximum values, whereas the other strings have lower 

values. However, the differences are not excessive, and they 

are due to singular situations, not structural ones, as 

evidenced from the similarity between the shapes. To 

investigate in depth, a further analysis based on by-monthly 

energy datasets was carried out, and results are reported in 

Fig. 5. 

 

TABLE II.  SPECIFICATIONS OF THE INVERTER  

MPP v o l t ag e  ran g e [V]  2 6 8  –  5 5 0  

Max  inp u t  vo l t ag e  [V]  6 0 0  

PV p o wer  [W ]  4 1 0 0  

Max  inp u t  cu r ren t  [A]  1 2 .2  

No min a l  o u tpu t  po wer  [W ]  2 6 0 0  

Max .  o u tp u t  p o wer  [W]  3 0 0 0  

Max imu m e f f i c i en cy   9 5 % 

No min a l  ma in s  v o l t ag e / f req uen cy  2 3 0 V /  5 0 Hz  

To ta l  h a rmo n ic  d i s t o r t i o n  <  4 .0 % 

Po wer  fac to r  1  

 

 
 

Fig. 4. Yearly violin graphs of the energy produced by the 6 PV arrays. 

Each line of Fig. 5 reports the violin plots of the six arrays 

constituting the PV plant under test. These diagrams depend 

on the bi-monthly energy datasets; then, there are six lines, 

each of them representing the energy behaviors of the six 

arrays. Instead, each column describes the variable energy 

behavior of each array during the whole year. By 

observing the violin plots of each period, they result 

almost equal, highlighting the PV arrays always produce 

the same energy. This is a confirmation that no anomaly is 

present, considering that the strings, equally constituted 

from the component point of view, are under equal 

environment conditions. Moreover, by comparing the 

periods each other, you can observe the large variability of 

the violin plots during the year. In fact, the periods March-

April and November-December show almost uniform 

distributions, highlighting that the values from zero to the 

maximum one are equally frequent. The first period 

January-February is characterized over of all by low 

values. The periods May-June and, over of all, July-

August are characterized by very high values, highlighting 

that the maximum values of the produced energy are 

largely more frequent than the others. The shape of the 

diagrams in May-June remembers exactly the violin shape, 

while the violins in July-August are characterized by a 

bimodal distribution. By seeing the diagram of a fixed 

column, it is easy to observe the variability of the energy 

behavior from January to December, but the extreme 

distributions (January and December) are similar. Thus, 

the diagrams of a year can be usefully utilized as 

benchmark for the next year because they show a cyclic 

behavior. This hypothesis is confirmed for the energy 

datasets of the successive year of the PV plant under 

investigation. After this analysis, we can affirm that no 

difference in energy performance of the PV strings results 

in any analyzed period and all the PV arrays showed the 

same electrical behavior. 

 
 

Fig. 5. Bi-monthly violin graphs of the energy produced by the 6 PV 

arrays. Each diagram represents energy in kWh. 
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The proposed approach allows to supervise the energy 

performance for two months, as shown, or for a wider period. 

Other statistical tools, as the simple box plots or the 

Bollinger bands [14], do not allow to get detaild information 

of the distributions, even if they are effective in defining the 

thresholds for a correct operation of the PV arrays. For 

analogy, methods usually applied to the electrical signals 

deriving from electrical systems [15-16] are not useful when 

the input data are unknown, as it occurs for PV plants not 

equipped by sensors to measure the environmental 

parameters. 

 

 

4.  Conclusion 
 

The violin graph-based strategy to supervise the behaviour 

of multi-array PV plants is useful in absence of 

environmental data. Several kernel functions with different 

values of bandwidth will be applied to the energy datasets 

in order to evaluate the different results among them, and to 

check if any anomaly is detected by using only specific 

kernel function and not in the other cases.  

The proposed methodology, based on both histograms and 

box plots, is effective in supervising the energy behaviour 

of multi-string PV plants, when the environmental data is 

not available. The procedure is applied to a real 20 kWp six-

arrays PV plant for six bi-monthly periods. No anomaly was 

detected, comparing the diagrams of the six arrays within 

each period under investigation. 

The proposed methodology was also applied by the authors 

to the daily energy datasets, but they are too limited to return 

reliable information. A simple cloud or temporary shadow 

on a string is detected as anomaly. For this reason, they 

diagrams are not reported in this paper, and the authors 

advise against using the proposed methodology on daily 

values. 
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