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Abstract. At this paper the “dynamic multilayer perceptron” 
(MLP) neural network has been applied to the control of an 
active power filter (APF). The objective is developing a new 
suitable control technique by APF’s for compensation of 
harmonic distortion present in nonlinear loads current by 
electric power circuits. The strategy has been extracting the 
instantaneous value of the fundamental harmonic from the load 
current by means of this artificial neural network (ANN) 
topology. A previous training with waveforms distorted by 
harmonics up to the 29th order showed to be enough for a high 
accuracy, working with typical nonlinear loads. By using this 
fundamental harmonic, the shunt APF reference distortion 
signal is obtained. This has been applied, at simulation, to a 
practical case of a power circuit containing an AC regulator and 
a series RL load. The results show the ability of this type of 
ANN to supply the APF with the reference signal necessary for 
its control. 
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1. Introduction 
 
In the last years the high increase of problems in the 
electric power distribution networks due to the presence 
of harmonics has become well known. Loads that use 
switching control with semiconductor devices are the 
main cause. At the moment, one of the most important 
tools for correcting the lack of electric power quality are 
the active power filters (APF), that, thanks to the recent 
development of signal processing and power converters, 
are a growing reality. A good amount of effort are being 
made trying to find better solutions for the control and 
application of APF’s to electric power networks. 
 
The objective of this work has been proving that dynamic 
neural networks, such as the dynamic MLP topology, 
previously trained with a certain number of distorted 
waveforms, are an alternative to the rest of the techniques 
used and proposed at the present time for controlling of 
the APF's, as the ones based on the use of the Fast 
Fourier Transform (FFT). A large number of these 
control techniques are based on ANN’s [1]-[9]. 

Fig. 1 shows a three-phase diagram of an ANN-
controlled shunt APF. A load current signal iL is acquired 
and used by the ANN to obtain the distortion current 
waveform as reference signal for the control of the APF. 
The power converter injects the necessary compensation 
current iC in the power circuit, achieving thus a sinusoidal 
source current.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A good deal of effort has been made to apply neural 
networks with “off-line” training to the control of the 
APF’s [1]-[7]. Some previous works showed the ability 
of different neural network topologies to be trained in 
this way for obtaining the distortion component of a 
waveform: the static MLP allows to obtain the 
amplitudes of the rectangular components of the 
harmonics (or another parameters) [1]-[4],[10]-[13]; 
different types of recurrent ANN’s, such as Elman 
networks, can be used for extracting the fundamental 
harmonic of the waveform [5],[10]; and the dynamic 
MLP was also employed to get the distortion component 
[6],[14]. However, limitations are always present by their 
application to control an APF for different reasons: 
limitated number of harmonics, limitated accuracy, 

       Fig. 1.  ANN-controlled APF. 
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difficulties for training, the noisy environment, or 
hardware difficulties. Therefore it is justified to continue 
to look for new methods and better results, that could 
make able in the future a more common application of 
the ANN’s for this purpose, with their advantages in 
terms of simplicity and dynamical performance. 
 
At this paper, the strategy has been employing the 
dynamic MLP to get the instantaneous value of the 
fundamental harmonic in real time by introducing the 
acquired signal sequentialy into the ANN. The distortion 
current is hence obtained as the difference between the 
load current signal and its fundamental component, as 
can be seen in Fig. 2. 
 
 
 
 
 
 
 
 
After an analysis of the different possible strategies and 
ANN topologies, this method with dynamic MLP 
achieved a high performance, extracting with a high 
accuracy and a low number of neurons the fundamental 
harmonic of distorted waveforms. It was considered the 
most suitable topology and method. Therefore, it has 
been used at this work to control the APF by the current 
harmonics compensation at a typical nonlinear load 
consisting of an AC regulator and a series RL load. So at 
this paper, two different steps can be noticed: the design 
and training of the ANN, and the simulation of the power 
circuit compensated with the neural network controlled 
APF.  
 
2.  Dynamic Multilayer Perceptron 
 
An artificial neural network is the interconnection of 
processing units (artificial neurons) as the one showed y 
Fig. 3. 
 
 
 
 
 
 
 
 
 
The most common combination function used with the 
weighted inputs is the addition. And the following 
transfer function f applied can be linear or nonlinear. The 
linear function used in some of the neurons at this 
topology  is  
 

(1) 
 
and among the different nonlinear functions [15],[16], the 
one used at this topology has been a sigmoidal type 
called “tan-sigmoid”, that corresponds to the expression: 
 

(2) 

Neural networks are organized into layers of neurons. All 
neurons in a layer have the same transfer function. There 
is also the so called “input layer”, formed by input units 
where the data stay until they are processed by the 
neurons. The number of layers can be two, three or 
higher. Fig. 4 corresponds to a simplified dynamic MLP 
topology that contains only 3 input units and 2 layers of 
neurons. 
 
 
 
 
 
 
 
 
 
 
 
 
The transfer functions used are nonlinear in hidden layer 
and linear in the ouput one. At this work, the functions 
are tan-sigmoid and linear, respectively. And as can be 
seen in Fig. 4, the input layer to the neural network is a 
time delayed series of input signal values. The first input 
unit receives the instantaneous value of the signal, 
sequentially introduced. The other input units have the 
delayed values of the input signal. This feature gives to 
the network the property of “short-term memory” [17], 
what makes it specially useful for the extraction of the 
instantaneous value of the fundamental harmonic in real-
time, then they always store the last cycle values of the 
signal. 
 
The design of the neural network consists of the 
adjusment of the number of layers, the number of 
elements in every layer and the choice of the transfer 
function to employ in the hidden layers.  After that, the 
network is trained by means of “backpropagation” 
algorithm and some sets of training pairs consisting each 
of a distorted waveform and its corresponding 
fundamental harmonic, with the aim of adjusting the 
connection weights of every neuron. At this point, the 
ANN should be ready for use. 
 
3.  Design and training of the ANN 
 
The objective consists of obtaining a neural network able 
to extract with enough accuracy the fundamental 
harmonic from waveforms distorted by a large number of 
harmonics. 
 
A.  Accuracy 
 
As regards the accuracy, this must be high enough to 
ensure a correct load current compensation in a power 
circuit. 
 
The accuracy of the ANN output will be measured in 
terms of the “mean square error” (mse). Being the error 
the difference between the neural network output signal 
and the real fundamental harmonic of the input 
waveform. This mean square error constitutes the mean 

         Fig. 2.  Fundamental waveform strategy. 
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value of the squared errors at every sample point along a 
cycle of the fundamental harmonic (128 points, as will be 
seen later). 
 
For evaluation of the neural network accuracy, the mse 
obtained by the generalization will be considered. It 
means, the evaluation index will be the mse of the ANN 
output for input waveforms that are distorted by several 
of the harmonics employed by the training, but in 
combinations that are different of those used as training 
waveforms. Another accuracy test will consist of the mse 
in the case of waveforms distorted by a larger number of 
harmonics than used at the training, with the aim of 
evaluating the neural network tolerance to higher order 
harmonics. In general, an mse = 1E−3 will be established 
as maximum allowable error by waveforms with unit 
amplitude in their fundamental component. 
 
B.  Number of harmonics 
 
As regards the harmonics number, that the ANN has to 
be able to correctly manage, it depends on the expected 
load types where the APF will be employed. The 
established goal is the elimination of harmonics from 3rd 
to an order higher than 20th. Although a much higher 
order than 20th can be reached under certain conditions. 
 
It has been proven, that with the necessary sampling 
frequency for the correct function of the APF, and by 
short training times of the order of an hour by a current 
personal computer, the allowed number of harmonics by 
the training lies about 10. Having into account that in 
typical nonlinear loads the presence of even harmonics is 
very low, for a single-phase circuit the harmonics used 
would be the odd ones from the 3rd to the 21st. 
Considering a three-phase circuit, where the triplen 
harmonics can be ignored, the components to use would 
be the orders 5, 7, 11, 13, 17, 19, 23, 25 and 29. 
 
If required, in case of loads that generate a wide spectrum 
harmonic distortion, the ANN could be adjusted for 
eliminating several additional harmonics by means of 
longer training times: increasing the number of training 
waveforms and the number of neurons in hidden layer. 
 
C. ANN design 
 
For the suitable neural network design, results of 
previous works have been considered, where it was 
proven that a single hidden layer was necessary with a 
very low number of neurons (3 elements by trainings 
with 4 harmonics) and a nonlinear “tan-sigmoid” type 
transfer function [10]. In the output layer, due to the 
nature of the strategy, only one neuron was required, then 
it consists of a single sequential output of the 
instantaneous value of fundamental harmonic. Two 
hidden layers, or some additional neurons in network, 
cause increased training times with no better results for 
the same sets of harmonics. And finally, with regard to 
the hidden layer transfer function, less accurate results 
were obtained, when another functions were employed. 
 
For a training with more harmonics (9 or 10) the number 

of neurons in hidden layer had to be increased up to an 
adequate number of 5 elements. As regards the number of 
input units it has been required a sampling rate of 128 
samples every fundamental harmonic cycle, what means 
that the input layer consists of a single actual data input 
and 127 time-delay input units. With a lower sampling 
frequency, such as 64 samples per cycle, the ANN can 
also be correctly trained, but its resultant output is a 
series of steps with a step width too large for the aim of 
application to the APF. The described neural network, 
that has been used at this work, can be seen in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. Training 
 
The training of the above shown ANN was carried out 
with the “Neural Network Toolbox” of MatLab. The 
training algorithm used by all MLP networks is 
“backpropagation”, and the special method in which this 
algorithm was computed was the “Levenberg-Marquardt” 
one. 
 
Since the usual distorted current consists of the sum of 
harmonics shown in following equation,  
 

(3) 
 
for application of the training algorithm a certain number 
of waveforms, with this equation generated, has been 
employed. Each of them contains a fundamental 
amplitude I1 = 1 and a determined combination of the rest 
of the odd harmonics from 3rd  to 19th (9 harmonics have 
been used for the results presented at this paper), with 
amplitudes 20% of that of the fundamental one, it means, 
with a value of 0.2. Every phase was set to ϕn = 0. The 
amplitude values have been set to the order of the unit 
because a better training is possible, being later the 
current signals normalized by the application of the ANN 
to the APF. 
 
A total number of 32 different waveforms has been 
necessary for a correct training. The associated output for 
each of them corresponds to the fundamental harmonic 
they contain. 
 
By applying this 32 training pairs to the neural network 
with the use of backpropagation algorithm, all 
interconnection weights are conveniently adjusted. After 
several iterations during one hour, the network 
performance reached was of mse = 3E−5 as maximum 
error by the waveforms of training pairs. 
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      Fig. 5.  Dynamic MLP network applied to the APF. 
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E.  Training results 
 
An analysis of the neural network accuracy follows in 
this section. The results here presented show the ANN 
performance with different cases of distorted waveforms. 
In Table I it can be seen the harmonic content of the 5 
waveforms selected for this test and also the resultant 
error mse of the neural network response. This table 
contains the amplitudes (A) and phases (Ph) for every 

harmonic order included in each of the waveforms. 
 
In Fig. 6 to Fig. 10 it can be seen the results for the cases 
1 to 5 of Table I. These figures show the waveforms 
introduced to the ANN and a comparison of the output 
and the real fundamental harmonic. At the first three 
cases, the error is so low that no difference can be 
appreciated at the corresponding figures between the 
ANN output  and the fundamental component. 

 
 
 
 

 
 
 
Case 1: This waveform contains a set of harmonics of the 
ones used at the training. They have no phase and their 
amplitudes are different from the ones employed at the 
training. However, their values are not higher than the 
20% of the fundamental, it means, not higher than the 
values used at the training. Fig. 6 shows the elevated 
accuracy with this type of waveforms. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Case 2: In this case, the ANN response is tested when 
some phases are present in their harmonics. The set of 
amplitudes corresponds to one of the waveforms 

employed at the training. In Fig. 7 can be seen that the 
ANN continues to work correctly in case of phases in the 
harmonics, despite no phases were used at the training 
pairs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 3: In this case it is tested the response when larger 
harmonic amplitudes than the ones used at the training 
are present in the waveform. The 3rd harmonic amplitude 
is even 100% of the fundamental component, much 
higher than the 20% used by the training pairs. In Fig. 8 
the good response of the neural network in these cases 
can be observed. 

Input waveform 
case  I1 I3 I5 I7 I9 I11 I13 I15 I17 I19 I21 I23 I25 

Output error 
(mse) 

A 1 0.2 0.15 0.1 0.05 0 0.2 0.15 0.1 0.05 0 0 0 1 
Ph 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.0 E−7 

A 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0 2 
Ph 30º 0 60º −30º 0 0 90º 0 −90º 0 0 0 0 

1.4 E−5 

A 0.7 0.7 0.2 0.4 0 0.2 0.4 0.1 0.2 0.3 0 0 0 3 
Ph 0 0 0 0 0 0 0 0 0 0 0 0 0 

5.7 E−6 

A 1 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0 0 4 
Ph 0 0 0 0 0 0 0 0 0 90º 90º 0 0 

5.1 E−4 

A 1 0.2 0.1 0 0.2 0.1 0 0.2 0.1 0 0.1 0.05 0.05 5 
Ph 0 0 0 0 60º 0 0 0 0 90º 90º 90º 90º 

9.5 E−4 

  Fig. 6. ANN performance: case 1 of Table I. 

 TABLE  I.-  ANN performance test: Harmonic content of 5 input waveforms with high distortion, 
                      and resulting error at the ouput for each of the cases (column at the right). 
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    Fig. 7. ANN performance: case 2 of Table I. 

20time (ms) 

1 

0 

0 

−1 

 In
pu

t w
av

ef
or

m
 

−0.5 

0.5 

https://doi.org/10.24084/repqj02.280 337 RE&PQJ, Vol. 1, No.2, April 2004



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 4: Once it was proven that the ANN generalization 
in amplitude and phase was very good by waveforms 
containing only the harmonics of the training, it is tested 
in case 4 the effect of higher order harmonics for 
evaluation of the network tolerance when harmonics, that 
were not considered at the training, are present. A 20% 
content of the 21st one and some phases are present in the 
waveform of this case. In Fig. 9 it can be observed that 
the ANN doesn't work with the same accuracy as before. 
However, once again its output error lies under the value 
1E−3 established as goal, thus showing that at least the 
following harmonic order to those of the training is well 
tolerated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 5: And finally, the result is presented in case of a 
waveform which contains small amounts of three of the 
higher order harmonics: 10% of the 21st, 5% of the 23rd 
and 5% of the 25th. In Fig. 10 it can be noticed that the 

network response is less accurate, being the error mse 
near the limit established as accuracy goal. But in spite of 
the larger influence of those harmonics on the error, it 
can be said that the ANN continues to reach its goal. 
That's to say, this neural network owns a certain 
tolerance by the presence of small harmonic amounts of 
higher order than the ones used at the training.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  Power circuit and active power filter 
 
Once the design and training had been carried out, the 
resulting neural network is applied to the control of an 
APF by simulation with MatLab tools. The system 
consisted on a power circuit, an active power filter and 
the ANN controller, as can be seen at Fig. 11 in next 
page. 
 
The voltage source in power circuit was taken without 
distortion, 220 VRMS , 50 Hz frequency. The load 
consisted of an AC regulator, based on thyristors, and a 
series RL load. The APF is based on a bridge of IGBT’s 
with a Vdc = 500 V. The ANN control corresponds to the 
diagram shown above at Fig. 2, where a sampling of the 
signal is made at a frequency of 128 samples/cycle (a 
sample every 1.5625E−4 seconds). 
 
5.  Simulation results 
 
The model of Fig. 11 was simulated by using Matlab. 
Different sets of parameters were employed at the power 
circuit and APF. In most cases the reference current 
obtained by the ANN controller was accurate enough to 
enable the APF to compensate harmonic distortion. 
 
Only in cases in which an elevated content of high order 
harmonics were present in the load current, the ANN 
controller failed in obtaining an accurate reference signal. 
But this may be improved with longer training times, 
increasing the number of harmonics present in the 
training waveforms and the number of neurons. 
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  Fig. 8. ANN performance: case 3 of Table I. 

 Fig. 9. ANN performance: case 4 of Table I. 

  Fig. 10. ANN performance: case 5 of Table I. 
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Nevertheless, a high performance was obtained with this 
6-neuron ANN, as can be seen in the results here 
presented. A list of the system parameters considered for 
this simulation is given in Table II. 
 
A.  Steady state harmonics compensation 
 
The results for the practical system with parameters of 
Table II can be seen at Fig. 12: Source voltage, load 
current, instantaneous value of the fundamental harmonic 
obtained by the ANN, reference current obtained as the 
difference between load current and fundamental 
harmonic, compensation current injected by the power 
converter, and finally, the resulting source current. 

 
 
 

 

Power circuit: 
 
 
 
 
 
APF: 
 
 
 

 

Phase voltage = 220 VRMS 
Frecuency = 50 Hz 
Source resistance = 0.1 Ω 
Load resistance = 20 Ω 
Load inductance = 30 mH 
 
Vdc = 500 V 
R = 10 Ω 
L = 30 mH 
Switching frequency = 40 KHz 
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                Fig. 11. Power circuit with active power filter and ANN control. 
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 TABLE II.  System parameters used in simulation.

     Fig. 12. Results of the typical circuit system of figure 11 simulated with parameters of Table II. They represent:
                  source voltage, load current, output signal current of the ANN, reference current signal obtained by the
                  ANN controller, APF output (compensation current), and resulting compensated source current. 
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It is to notice that the harmonic distortion was fairly well 
eliminated, remaining as result a nearly sinusoidal 
waveform. 
 
B.  Dynamical performance 
 
In order to test the performance of the ANN by load 
changes, the results of a simulation are here presented 
where a step load change occurs at time 60 ms. One 
additional resistance is connected in parallel with the 
load, as can be seen in Fig. 13, consequently increasing 
the total load current. Fig. 14 shows the effect of the 
change on the current, on the ANN output and on the 
source current. As can be observed, the neural network 
presents a fast respond, requiring only one cycle, 20 ms 
time, to give again the right value of the fundamental 
harmonic, with the corresponding compensation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.  Conclusion 
 
A dynamic multilayer perceptron ANN has been trained 
for its use at the control of a shunt active power filter. In 
previous works another techniques and network 
topologies or strategies were employed with variable 

results. In this work the dynamic MLP has been proven at 
the strategy of obtaining the instantaneous value of the 
fundamental component in harmonic distorted load 
current waveforms. Its "short-term memory" property 
due to the time-delay elements in its input layer makes it 
specially suitable for extracting in real-time this 
harmonic. 
 
By  off-line trainings with harmonic distorted waveforms, 
this ANN may be adjusted, with only 6 neurons and short 
training times, for an accurate working with a maximum 
harmonic order higher than 20th. By means of longer 
traning times and some additional neurons, even a higher 
harmonic order can be achieved. 
 
A practical case with a power circuit containing an AC 
regulator and a RL load, compensated with an APF 
controlled by one of these networks, has been simulated. 
Although the presence of very high order current 
harmonics by some particular loads might reduce the 
accuracy of the ANN’s, the results obtained at this work 
show that this control method can be applied to an APF 
in case of typical loads with a high accuracy and a fast 
transient response by load changes.     
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