
 
 
 
 

Spreadsheet assisted overall Design of a Wind Turbine Blade  
 

U. Aguirre Llona1, J. J. Pérez Rambla2 and G. Aguirre Zamalloa1 

 

1 Department of Electrical Engineering 
E.S.I.B., Bilbao, University of Basque Country  

Alda Urquijo s/n, 48013 Bilbao (Spain) 
Phone:+34 946014057, Fax:+34 946014200, e-mail: iepagzag@lg.ehu.es 

 
2 Ebro-Cantábrica de Energías Renovables (ECERSA) 

c/Albert Einstein 15, Ed. CEIA, Of. 126 
Parque Tecnológico de Álava, 01510 Miñano, Álava (Spain) 

Phone: +34 945 298207, enorsa@enorsa.pt-alava.es 
 
 
 

Abstract. In this paper we show in an orderly, step by step 
fashion the typical hypotheses, approximations and tradeoffs 
that go into the design of a wind turbine blade. The main 
objective of the work is not an efficient code but a clear one. 
We discuss the interplay between different strategies and we 
illustrate the procedure with a real blade calculation. Both 
aerodynamic and mechanic design are addressed. 
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1. Introduction 
 
The very Art of the design engineer belongs to the proper 
account of the relevant factors at work in some machine 
or device, to the balancing of the physical and 
mathematical approximations, and to their harmonious 
integration within a sensible model, and all of this with 
due regard to economic feasibility. 
 
It is quite fair to state that Renewable Energy 
Technologies are one of the most demanding disciplines 
on account of the broad range of competences they call 
for from the design engineer; an excellent example is 
provided by the intertwined aerodynamic, mechanic and 
electric problems to be solved by the design of a wind 
turbine. 
 
In this work we present a step by step bottom-up design 
methodology based on the Blade Element Theory (BEM) 
for the profiling of the blades of a horizontal upwind 
wind turbine. Anyhow, we do not claim it to be the 
“best” possible design procedure; we think that is a 
reasonably simple design procedure and that any designer 
should give it a try as a first approximation of a “real” 
design. The motivation behind this work is twofold: 
 

a) We wanted to organise the calculations within a 
clear, ready to be coded pattern. 

b) We wanted to give an illustrative and interesting 
detailed example thereof. 

 
At this point we want to stress the difference between 
design and simulation. Design, as we understand it, 
pertains to the proper profiling and sizing of the different 
elements composing the assembly under scrutiny, and its 
natural setting is the (time independent) steady state 
analysis. On the other hand, finite element method based 
simulation, as implemented by industrial strength codes, 
solves the true time dependent (transient) rigorous 
equations of the system. Here we are not dealing with 
vibrations, fatigue calculations, gyroscopic forces nor 
yawing moments on the structure. However, our analysis 
must precede such advanced calculations. 
 
Because of the great volume of data we will be dealing 
with, calculations ought to be done with the help of a 
computer, be it with a spreadsheet or with a scripted 
programming language. We think that it is pointless to 
give here the whole source code of the program. Rather, 
we prefer to describe with some detail its organisation 
and purpose. 
 
As mentioned, analysis means problem decomposition, 
which in turn means that every analysis is ad hoc to some 
extent. The procedure advocated here has nevertheless 
the advantage of being fully iterative; this special layout 
lends itself to improvement because the hypotheses 
introduced at each step are clearly and purposely stated.  
 
At any rate, it is worth stressing that an aerodynamic 
design is a complex, highly non-linear task which calls 
for the use of a computer and great finesse on the part of 
the analyst. So much so that, in practice, that the 
indicated steps or “iterations” interact an get inextricably 
mixed. This is unavoidable and makes the beauty of the 
craft. Sometimes the analyst may be guided by some 
empirical rules, such as “the pressure centre lies at 1/3 of 
the radius” or “the centre of pressure as near as possible 
from the gravity centre”. These “principles” can only be 
implemented on a try and error basis. 
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The paper is organised as follows: the first section is this 
Introduction. Then in the second section we state the 
Design Goals, the independent set of variables of our 
choice, and we start the iterative selection of the airfoil 
type and radius. Third section is devoted to the 
aerodynamic calculations. In the subsection A we present 
the theoretical background, and in the next B subsection 
we perform the iterative calculation of an “optimised” 
chord. Subsection C deals with the complete blade 
calculation at rated wind speed. Then in the subsections 
D and E we tackle the power, torque and thrust 
calculations at speeds lower and higher than rated wind 
speed, respectively. To end with this section we present 
some special cases (wind gusts and feathered position) in 
the F subsection. Next section (4) has to do with the 
mechanical design of the steel beam (which is our 
innermost iterative loop). The main conclusions come in 
section 5 and next a handful of References is included. 
 

2. Design Goals 
 
First of all we establish our design goals: we want to 
design a two bladed, blade-pitch controlled, variable 
velocity and constant tip-speed ratio wind generator of 
P=200 kW rated power. The machines developed by 
ECERSA are provided with an oil hydraulic system of 
power transmission which make them very rugged and 
subject to low maintenance costs. On the other hand the 
typical overall efficiency reached is about η≈0.87. We 
will calculate the power output, torque and thrust at wind 
speeds 5<V<20 m/s with rated speed Vr=12 m/s (we 
disregard the effect of wind shear). We will analyse an 
incompressible flow with (sea level air density) 
ρ=ρair=1.25 kg/m3. In correspondence with the blade 
number b=2 choice, we fix the tip speed to wind speed 
ratio as λdesign =6. [1]-[3]. 
 
A decision as to the airfoil choice has to be done at this 
stage. Several high performance profiles are in common 
use: NACA series 4412, 4415, 4418 and Göttingen 398 
for instance, to name just a few. In a fully iterative 
procedure this is naturally the start of the first iteration 
loop. Several profiles should be utilised and the final 
results compared (power-torque-weigh-cost) to make an 
informed decision. For illustrative purposes it will suffice 
to show here the results concerning the choice of NACA 
4415 airfoil, which is well known to offer good 
performances [3]. 
 
Now, we estimate an average power coefficient Cp≈0.45. 
Here starts the second iterative loop: the radius of the 
disk swept by the machine depends on this choice and 
has to be calculated in a self consistent way because the 
Cp coefficient is recalculated at a later stage: 
 

  max 3

2 12.27 m
Vr p

PR r
Cη ρ π

⋅= = =
⋅ ⋅ ⋅ ⋅

  (1) 

also 

   
max

V
5.87

r
design r rad

s
λ

ω
⋅

= =     (2) 

 
As it stands and will be discussed below, there is still one 
last degree of freedom that should be fixed by the 
designer: the incidence angle. 
 

 
Fig. 1: Airfoil setting and notation 

 
3. Aerodynamic Calculations 

 
First of all a word about notation: in the BEM method a 
discretisation is performed, but we feel free to indicate all 
magnitudes interchangeably with continuous or discrete 
indexes, with differentials or with increments. We will 
write for instance ( )f r  or ( )i if f r=  where 

minir r i r∆= + ⋅ , with min Hubr r= , r∆  the discretisation 

step and max min0
r ri N

r∆
−

≤ ≤ = . Also, the notation 

utilised throughout for speeds, forces and angles should 
be clarified (see Fig.1): 
 

a) Wind velocity vectors: 
 
U: apparent wind induced by the tangential velocity 
( | |wind blade motionU U= −
�� ��

). If we disregard induction effects 
it is given by U rω= ⋅ . V: absolute wind velocity (we 
admit here that it is an homogeneous field). W: relative 
wind velocity for an observer moving with the blade. 
Vectorially ( )motion windW V U V U= + − = +

��� �� �� �� ��

. 

b) Forces: 
 
L=FL (dL=dFL for differential elements) stand for Lift. 
D=FD (dD=dFD for differential elements) stand for Drag. 
R=FR (dR=dFR for differential elements) stand for 
resultant (total) force. 
 

c) Angles: 
 
( )i r  is the incidence angle; ( )rα  is the setting angle (it 

comprises twist and pitch); 1( ) tan Ve r
U

−  =  
 

 is the 

inclination angle. Inspection of Figure 1 makes clear that: 
 

e iα= +   (3) 
 
Moreover 

https://doi.org/10.24084/repqj02.273 293 RE&PQJ, Vol. 1, No.2, April 2004



1 1( ) tan tan D

L

CDr
L C

ε − −   = =   
   

  (4) 

 
where ( )LC i  and ( )DC i  are the lift and drag coefficients 
of the NACA 4415 airfoil, taken from [3] 
 
A. Theoretical background 
 
The vortex theory of Glauert [3], [5] defines two 
coefficients h(r) and k(r) which take into account the 
induced rotation of the airflow which goes through the 
rotor provoked by the sheet of vortices originated at the 
tip and the hub of the finite blade. In this theory the axial 
velocity becomes: 
 

1
1

2
kV V+= ⋅    (5) 

 
where V1 corresponds to the upstream, unperturbed wind 

velocity. Clearly in the ideal Betz limit we have 1
3

k = . 

And the tangential velocity becomes: 
 

1
2

hU rω+= ⋅ ⋅    (6) 

 
If the vortex induction is negligible we have: 1h = . On 
the other hand: 
 

2 2W U V= +    (7) 
 
Now, we can calculate the elementary axial force (thrust) 
either by the aerodynamic expression: 
 

21 cos( )( )
2 cosa L

edF b c r W C drερ
ε
−= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (8) 

 
where ( )c r  is the blade chord, or by application of axial 
momentum conservation: 
 

2 2
1 (1 )adF r V k drρ π= ⋅ ⋅ ⋅ ⋅ − ⋅   (9) 

 
In parallel, we can calculate the elementary tangential 
force (torque producing: tdT r dF= ⋅ ) either by the 
aerodynamic expression: 
 

21 sin( )( )
2 cost L

edF b c r W C drερ
ε
−= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (10) 

 
or by application of angular momentum conservation: 
 

2
1 (1 ) ( 1)tdF r V k h drρ π ω= ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅   (11) 

 
The expression of the local power coefficient is: 
 

2
3

1

( 1) ( 1)
t

p

dFr
drC k h

r V

ω
λ

π ρ

⋅ ⋅
= = ⋅ + ⋅ −

⋅ ⋅ ⋅
 (12) 

where the shorthand 
1

( ) rr
V

ωλ ⋅=  has been used. We 

have now enough elements to perform the actual 
calculations 
 
B. Ideal and real chords 
 
In this section we explain how to obtain an “optimised” 
chord, which amounts to perform a third iteration. 
Examining the equations above we realise that the 
fundamental ( )i r , ( )rα  (or ( )e r ) and ( )c r  quantities 
are unknown. Also, we realise that only two of them are 
independent. We need an extra bit of information to 
obtain the chord. Hence, we set up the following model: 
it is not hard to demonstrate [3] that an aerodynamically 
“smart” choice of ( )i r  is that which makes tan( )ε a 
minimum because it maximises the local pC  
(aerodynamic efficiency) at the element. Actually this 
angle is 6o

oi ≈  for the NACA4415 aerofoil. The ideal 
minimum is tan( ) 0ε = . With this ideal assumption and 
equating and combining the above equations we get the 
following expressions: 
 

2

2

1( ) 1 kh k
λ
−= +   (13) 

and 
1 1tan( )

1
ke
hλ

+= ⋅
+

    (14) 

Now, we choose k such that ( )pC k  is a local maximum: 
 

            
1

2 tan ( )0 1 cos
3

pdC
k

dk
π λλ

− += ⇔ = + ⋅  
 

 (15) 

 
The ideal chord can now be calculated, for instance from: 
 

28 (1 ) sin ( )( )
( ) (1 ) cos( )L

r k ec r
b C i k e

π⋅ ⋅ ⋅ − ⋅=
⋅ ⋅ + ⋅

  (16) 

 
This ideal chord is illustrated in Figure 2. 
 
Two remarks are in order, however. First, the 
manufacture of a blade with such a curve may not be 
possible or economically interesting. This is why we 
have adopted a piecewise linear approximation which 
closely resembles the ideal chord (see Fig.2). Second, 
setting oi i=  is certainly not the mechanically best 
solution. This value of i  leads to unacceptably large 
chords near the hub (increased weigh) A compromise 
must be sought, increasing i  near the hub such that the 
aerodynamical performance is not drastically diminished 
but the chord shrinks to reasonable values. This is the 
reason of our choice of ( )i r  shown in Figure 3. 
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Figure 2: Ideal and PWL approximate real chords 

 
C. Rated wind speed calculations 
 
Once ( )c r  and ( )i r  are known and fixed, we drop the 
ideal assumption tan( ) 0ε =  and come back to equations 
(5)-(11). We have to solve simultaneously this set of 
nonlinear equations at rated wind speed (fourth iterative 
loop) to calculate: ( )adF r , ( )tdF r , ( )e r , ( )h r  and 

( )k r . At each element we iterate starting from the 

guesses 1
3

k =  and 1h = ; with these values we use (8) 

and (10) to calculate the forces and again (9) and (11) to 
recalculate the induction coefficients, until convergence 
is achieved. 
 

 
Figure 3: design incidence angle at rated speed 

Apart from the values of power, thrust and torque 
illustrated in Figure 6 , the most interesting result of this 
calculation is the twist distribution of the blade given by 
the calculated ( ) |V ratedrα −  that is illustrated in Figure 4 
along with a smooth cubic interpolant (“real” α  ) that 
we will keep for good in calculations at speeds other than 
rated. 
 
D. Calculations at wind speeds lower than rated 
 

This is the fifth iterative loop. We know the chord c, α 
that we keep constant and just calculate the forces 

( )adF r , ( )tdF r , the induction coefficients ( )h r  and 
( )k r , and the new incidence ( )i r  (or ( )e r ) for different  

 

 
Figure 4: calculated and approximated α(r) 

 
wind speeds below rated. Results are summarised in 
Figure 6. 
 
E. Calculations at wind speeds higher than rated 
This is the sixth iterative loop. The principle of 
calculation is very much the same as in the precedent 
subsection. The only difference is that a pitch angle is 
introduced to keep the power at rated values: 
 

( ) ( )real
blade

r rα α ∆α= +   (17) 

 
These values are illustrated in Figure 5. 
 
 

 
Figure 5: Variation of pitch angle (deg) for steady rated power 

 
F. Some special cases 
 
Once we have the code up and running, it is in principle 
possible to simulate any situation and calculate thrust, 
power and torque even in abnormal situations; especially 
interesting are, for example, the instantaneous wind 
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gusts, say, of V=30 m/s or higher at rated omega with 
pitch angle zero or higher, for example 80º, near the 
feather position. However these calculations are only 
meaningful as far as CL and CD coefficients measured (in 
a wind tunnel) over a wide enough i range become 
available. Otherwise we can make some approximations: 
we can naively pose 0LC =  and 1DC =  each time that 
the incidence angle is out of bounds. A better solution 
(implemented for example in the WT_perf code) is to use 
data from flat plate theory. 
 

Figure 6: Results of the aerodynamic calculations 
 

4. Mechanic Calculations 
 
This is the innermost iterative loop our calculation. Our 
goal is to calculate the diameters of the cylindrically 
hollow steel beam that will be able to stand its own 
weigh in addition to the aerodynamic efforts calculated 
beforehand. The variable that we have to optimise is the 
weigh of the beam. Ours being a static calculation we 
will concentrate only in one position: that with the blades 
horizontal, so that the bending moment due to their weigh 
is worst. We arbitrarily divide the total length in N 
pieces, say 4 or 5 of equal length and start calculating the 
proper sizes of these pieces from the tip down to the hub. 
If the procedure does not produce a useful result we will 
have to revise this partitioning (consider more pieces 
and/or of variable length). The properties of the steel in 
use are: ρsteel=7850 kg/m3 and σmax=510 MPa (maximum 
stress). The maximum external diameter (D) of each 
piece is given by Dmax=0.15* chord at the highest radius 
in a NACA 4415 aerofoil. The inner diameter (d) can be 
calculated with the help of the following expression: 
 

max max
Mf r
I

σ⋅ = ⋅   (18) 

 

where ( )4 4

64
I D dπ= ⋅ −  is the surface moment of a 

hollow cylinder, max 2
Dr = , f is a security factor, say 

0.65f =  for instance, and M is the total bending 

moment at the section. Here we are assuming that the 
elemental force total lies in the same plane, independent 
of r. This approximate value of M is in fact an 
overestimation of the real value so that we are on the safe 
side. In order to obtain M we apply: 
 

max

( ) ( ) ( )
r

T

r

dRM r x r x dx
dx

= − ⋅ ⋅∫   (19) 

where 

( ) ( )2 2sin( ) cos( )T A AdR dR e dP dR eε ε= ⋅ − + + ⋅ − (20) 
 

AdR  is the aerodynamic resultant at the element, TdR  is 
the grand total and dP  is the weigh of the element. The 
weigh of the fibreglass and of the other materials is 
altogether negligible in comparison with the steel beam. 
The total bending moment calculated with (19) is shown 
in Figure 7. The results obtained with this method after 
some tinkering are illustrated in Table 1. 
 

 
Figure 7: Total bending moment over the beam 

 
Table 1: Sizing of the steel beam (see  text) 

 Dmax D(cm) d 
(cm) 

Mass 
(kg) 

σ (MPa) maxf σ⋅
 

piece 1 28.7 28.4 26.3 162.9   319.9     332 
piece 2 20.3 20 17.2 147.7   329.8     332 
piece 3 16.2 16 13.9 89.0    332.9     332 
piece 4 12.6 12 11 34.0 329.7 332 
Total    433.7   
 

5. Conclusions 
 
We present a quite generic blade design procedure 
implemented with a spreadsheet, which is highly scalable 
and can suit the design of blades of differing sizes. This 
methodology is capable of yielding a good preliminary 
blade design by taking into account both aerodynamic 
and dynamic factors influencing the blade performance.  
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