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Abstract. In this work we introduce the concept and method 

of so-called cooperative solar generation forecasting, where 

geographically close data sources are utilized in order to improve 

forecasting accuracy. We devised and examined various large-

scale one-hour-ahead artificial neural networks based solar 

generation forecasting scenarios to prove the benefits of 

cooperation. The introduced cooperative solar generation 

forecasting method showed significant improvement in 

forecasting accuracy, especially when combined with previous 

generation data, where a root mean square error reduction of at 

least 50% could be achieved in the majority of cases. We believe 

these results point to a scientific and economical benefit of 

international cooperation in solar generation forecasting.  
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1. Interest and Objectives 

 
At present, the energy production system still mostly relies 

on non-renewable sources, such as fossil fuel power plants. 

These types of power plants are known to be harmful to 

the environment, since they are responsible for the 

emission of greenhouse gases, which lead to global 

warming [1]. Renewable energy does not only offer an 

alternative source for clean energy – it could also help to 

reduce a possible energy crisis (which is looking likelier 

day by day) by playing a key role in meeting future 

electricity demands. Solar energy is considered to be one 

of the most promising forms of renewable energy sources 

[1].  

The intermittent nature of renewable energy generation 

poses a significant operational challenge to power systems, 

which traditionally operate under deterministic rules. 

Generation forecasting is considered to be a good strategy 

for the mitigation of these effects [2]. In addition to the 

operational benefits, generation forecasting can have 

significant economic advantages, especially in cases 

where short term electricity trading is possible [3]. 

Overall, a reliable forecasting method for renewable 

energy production would have a very positive influence 

on the reduction of the integration costs, the decrease of 

the average annual operating costs and the minimizing of 

the reserve shortfalls [4]. This study examines the 

possibilities of artificial neural networks based, less 

explored [5] large-scale generation forecasting. With an 

optimisation of inputs, we aim to improve the one-hour-

ahead short term solar generation forecast accuracy. For 

this purpose, a cooperative forecasting approach was 

developed and analysed in several test scenarios, with 

very promising results.  

This paper is organized the following way. Section 2 

discusses the necessity of solar power generation and the 

typically used forecasting horizons, while Section 3  

introduces the data set and the methodology. The 

experimental results are presented in Section 4, and a 

short summary is offered in Section 5. 

 

2. Solar Power Generation Forecasting 
 

Solar power forecasting plays an important role in the 

operation, scheduling and balancing of electricity 

production by standalone photovoltaic (PV) plants, but 

also in large grid-interconnected solar PV plants [6]. 

Solar generation forecasting can help the grid operators 

to manage the system more efficiently, for example when 

deciding whether to commit or decommit generators to 

accommodate changes in generation and react to extreme 

events [4]. This increases system reliability, since 

reliability is dependent on the system’s ability to 
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accommodate expected and unexpected changes and 

disturbances while maintaining quality and continuity of 

service for the customers [4]. Solar generation forecasting 

is not only important for the day-to-day grid operation, but 

it is also vital to estimate the reserves, schedule the power 

system, manage congestion and storage optimally, and also 

to trade in the electricity market. Besides helping to 

overcome operational challenges resulting from the 

volatility and uncertainty of the solar energy sources, 

forecasting has a significant monetary impact too. 

Forecasts grant the possibility to reduce the amount of 

operating reserves needed for the power system, hence 

reducing the system balancing costs. With forecasts, grid 

operators can schedule and operate other generating 

capacity efficiently, reducing fuel consumption, operation 

and maintenance costs and gas emissions as compared to 

simply dealing with the energy generated by variable 

sources without any beforehand knowledge [4]. In 

literature, we can also find specific examples of how 

forecasting can affect costs and profits. For instance, [4] 

shows how a six-million-dollar saving could be achieved 

in one year as a result of forecasting [7]. Moreover, it is 

shown how the use of production forecasts reduced 

operating costs over the course of one year by up to 14%, 

or 5 billion US dollars per year, which was achieved 

through a reduction of operating costs by 12–20 $/MWh 

(in [8]).  

Solar generation forecasting models are usually classified 

into three categories: statistical, physical and hybrid [6]. 

Statistical methods have the advantage that they do not 

require the internal state information of the system to be 

modeled. Artificial intelligence (AI) is often used for 

complex or non-linear data, particularly for data arranging, 

pattern recognition, simulation, and optimization. It is 

often utilized for solar generation forecasting, mainly 

based on Artificial Neural Networks (ANNs) [9]. For 

example, [10] introduces an ANN model based on 

Extreme Learning Machine (ELM) trained to forecast solar 

photovoltaic power.  

Forecasting methods can be classified according to the 

forecast horizon into four categories: (i) very short-term 

forecasting (a time horizon of a few seconds to a few 

minutes); (ii) short-term forecasting (up to three days 

ahead); (iii) medium-term forecasting (from a few days to 

one week ahead); and (iv) long-term forecasting from a 

few months to even several years ahead [11]. The 

forecasting horizon categories usually have specific 

applications. Short-term forecasting is mainly used for the 

control of power system operations, economic dispatch, 

unit commitment, etc. Conversely, medium and long-term 

horizons are usually used for the maintenance and the 

planning of PV plants.  

Machine learning methods are believed to be best suited 

for short term forecasting [11]. The forecasting time 

horizon used in this study is the one-hour-ahead 

forecasting, which also falls into the short term category.  

Table I presents the start-up time of some electricity 

production plant types. It shows that these have a relatively 

long start-up time, while  quicker responding technologies 

have a start-up time within an hour. Hence a one-hour-

ahead forecast of the solar energy generation could be 

helpful in the management of the energy resources. 

 

Table I - Characteristics of Electricity Production Plants [4] 

 

Type Size (MW) Start-up Time (h) 

Nuclear power plant 400–1300 per 

reactor 

40 (cold)–18 h 

(hot) 

Steam thermal plant 200–800 per 

turbine 

11–20 h (cold)– 5 

h (hot) 

Fossil-fired power 

plants 

1–200 10 min–1 h 

Combined-cycle 

plant 

100–400 1–4 h 

Hydropower plant 50–1300 5 min 

Combustion turbine 

(light fuel) 

25 15–20 min 

Internal combustion 

engine 

20 45–60 min 

 

3. Data Set and Methodology 
 

This study implemented and examined an Artificial 

Neural Network (ANN) based solar generation 

forecasting algorithm in different forecasting scenarios. 

For the ANN algorithm, a Multi-layer Perceptron 

Regressor (MLPRegressor) architecture was applied from 

Python’s scikit-learn library, which optimizes the 

squared-loss using the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) or stochastic gradient descent approach 

[12]. According to the analysis in [9], artificial 

intelligence approaches are widely used and often 

outperform the traditional methods for short term solar 

generation forecasting. Most of the research is focused on 

forecasting at a single location, while little work has been 

done on regional models [5]. This paper examines 

cooperative one-hour-ahead generation forecasting on 

large-scale models (encompassing entire countries), and 

analyses their fluctuation in performance depending on 

their input data. It reveals how the one-hour-ahead solar 

generation forecasting accuracy can be improved with 

cooperation between different data sources. 

Six large-scale open-source data sets were used from six 

different countries, namely Austria, the Czech Republic, 

Switzerland, Spain, France and Italy. The examined time 

period for all data sets was between 2017 and 2019 

(where 2017 and 2018 made up the training data set, and 

2019 was the test data set). Finding the optimal length of 

the training data for a solar generation forecasting model 

is mainly an experimental process, the data of two to 

three years is considered to be the most suitable for 

model training to get the best results [4]. We obtained the 

data from the Open Power System Data platform [13]. 

After pre-processing and cleaning, the data was 

converted into pandas dataframes, which were split into 

training and testing sets. The training set contained the 

weather and timeseries generation data for two years 

(66.66% of the data whole data set), and the test set 

contained the weather and timeseries generation data for 

one year (33.33% of the data set). 

For the validation of the results of  forecasting, the root 

mean square error (RMSE) of each algorithm on the test 

data set was examined, while taking algorithm runtime 

into consideration as well. The RMSE (see Equation 1) is 

a popular regression verification measure, which is 
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defined as the square root of the mean of the squared 

differences between corresponding elements of the 

forecast ( fiz ) and the observation ( oiz ) – in this case, the 

difference between predicted generation and real 

generation [14]. Runtime is the time needed for the 

training of the algorithm. 

 
N

zz
RMSE

N

i oifi 


 1

2

   (1) 

 

4. Experimental Results 

 

The six data sets were assigned to two groups – one group 

consists of the Austrian (AT), Czech (CZ) and Swiss (CH) 

data, while the other group includes the Spanish (SE), 

French (FR) and Italian (IT) data. The data sets (countries) 

in each group can share data between each other in the 

cooperative scenarios (see Figure 1). The dotted line 

connects the data sets which can cooperate with each 

other, but only in the cooperative scenarios.  

 
Figure 1: Data set groups 

The output of our ANN algorithm was always the one-

hour ahead prediction of the solar generation (in MW) for 

the examined data set, while we varied the input according 

to several test case scenarios. In our base case, we used the 

temperature ( C ), the direct horizontal radiation 

( 2mW ) and the diffuse horizontal radiation ( 2mW ) 

– henceforth referred to collectively as weather data – of 

the examined data set as the input. In the cooperative 

forecasting scenarios, the weather data of each country in 

the respective group was applied. In the 24 h cooperative 

forecasting scenario, the input was the one-hour-before 

weather data of the examined country, and the 24 h before 

weather data from the cooperating countries (countries in 

the same group). It was also examined how adding the 

one-hour-before generation data to the weather as input in 

the next scenario impacts forecasting results. Accordingly, 

in the cooperative scenario with added generation data, the 

input was the one-hour-before weather and generation data 

for all countries in the group. In the 24 h one-hour-ahead 

cooperative generation forecasting with generation data, 

the input was the one-hour-before weather and generation 

data of the examined country and the 24-hour-before 

weather and generation data of the cooperating countries. 

An example is shown in Table II, where one time step 

(2019. 05. 18. 13:00) of a forecast on one data set (Spanish 

data set) is presented for all examined scenarios. The 

different input parameters can be observed here, while 

naturally, the output is the solar generation forecast for 

the mentioned time step. 

Table II – Examples of input and output parameters in different 

scenarios (Group 2, Spanish data set) 

 

Example input 

parameters 

Corresponding output 

parameter (forecasted value) 

One hour ahead forecasting 

Spanish weather data 

from 2019. 05. 18. 

12:00 

Solar energy generation in 

Spain for 2019. 05. 18. 

13:00 

One-hour-ahead cooperative forecasting 

Spanish, French and 

Italian weather data 

from 2019. 05. 18. 

12:00 

Solar energy generation in 

Spain for 2019. 05. 18. 

13:00 

One-hour-ahead cooperative forecasting (24 h) 

Spanish weather data 

from 2019. 05. 18. 

12:00 

French and Italian 

weather data from 

2019. 05. 17. 12:00 

Solar energy generation in 

Spain for 2019. 05. 18. 

13:00 

One-hour-ahead forecasting with generation data 

Spanish weather and 

generation data from 

2019. 05. 18. 12:00 

Solar energy generation in 

Spain for 2019. 05. 18. 

13:00 

One-hour-ahead cooperative forecasting with 

generation data 

Spanish, French and 

Italian weather and 

generation data from 

2019. 05. 18. 12:00 

Solar energy generation in 

Spain for 2019. 05. 18. 

13:00 

One-hour-ahead cooperative forecasting with 

generation data (24 h) 

Spanish weather and 

generation data from 

2019. 05. 18. 12:00 

French and Italian 

weather and 

generation data from 

2019. 05. 17. 12:00 

Solar energy generation in 

Spain for 2019. 05. 18. 

13:00 

 

The experimental results of the two groups, Group 1 and 

Group 2, are presented in Table III and Table IV, 

respectively. Within the tables, the achieved test values – 

root mean square errors (RMSE) and algorithm training 

time – are given for each data set in each scenario 

separately. 

Table III – Solar generation forecasting (Group 1) 

 

 AT CZ CH 

One hour ahead forecasting 

RMSE 61.4708 140.8735 29.1212 

Runtime [s] 2.7989 6.5168 5.7042 

One hour ahead cooperative forecasting 

RMSE 53.8516 105.4581 22.0411 

Runtime [s] 8.5347 12.3986 15.9387 

One hour ahead cooperative forecasting (24 h) 

RMSE 50.8506 95.9488 21.1447 
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Runtime [s] 9.2895 13.4802 16.2596 

One hour ahead forecasting with generation data 

RMSE 52.6571 114.8401 22.2997 

Runtime [s] 5.9555 5.8936 5.1496 

One hour ahead cooperative forecasting with generation 

data 

RMSE 29.4456 55.1854 10.0242 

Runtime [s] 9.9245 10.0438 11.3595 

One hour ahead cooperative forecasting with generation 

data (24 h) 

RMSE 24.5071 48.4023 9.5708 

Runtime [s] 6.6001 8.1927 9.2013 

 
Table IV – Solar generation forecasting (Group 2) 

 

 ES FR IT 

One hour ahead forecasting 

RMSE 626.6078  644.5594 948.8579 

Runtime [s] 4.9257  2.9964 3.3367 

One hour ahead cooperative forecasting 

RMSE 535.5095  529.4183 474.3324 

Runtime [s] 8.4420  9.5291 8.1970 

One hour ahead cooperative forecasting (24 h) 

RMSE 540.1418  520.0801 561.1038 

Runtime [s] 7.9667  6.5511 12.9118 

One hour ahead forecasting with generation data 

RMSE 538.4999  627.4544 885.8472 

Runtime [s] 8.2998  5.2325 3.9643 

One-hour-ahead cooperative forecasting with generation 

data 

RMSE 340.4299  451.4564 285.0834 

Runtime [s] 4.6663  4.1397 5.3836 

One-hour-ahead cooperative forecasting with generation 

data (24 h) 

RMSE 330.9977  461.3612 377.8792 

Runtime [s] 5.2398  3.0809 7.6705 

 

The decrease seen in the RMSE (in percent) compared to 

the base case for different scenarios is illustrated in Figure 

2 and Figure 3 for Group 1 and Group 2, respectively. 

These figures (and the tables) show that a small 

cooperation between three countries can already 

significantly improve the solar generation forecasting for 

each data set, as in all cases, the cooperation decreased the 

error at least by 12%. The smallest percentual decrease 

was seen on the Austrian data set (12%), which in this case 

means that with cooperation only, we could decrease the 

error of the forecast by approximately 8 MW/hour on 

average. The largest percentual RMSE decrease was 50%, 

which was observed on the Italian data set.  

The data closest in time to the forecast does not necessarily 

bring the best results – when using the 24-hour-before data 

from the cooperating countries, the accuracy was improved 

in all cases for Group 1. However, the data in Group 2 

proved that the one-hour-before cooperative data yielded 

better results than the 24 h before data in the case of the 

Italian data set. So using the example from Table II, we can 

say that the forecast would improve on most of the data 

sets if the “One hour ahead cooperative forecasting (24 h)” 

scenario is used – i.e., if, for example, the Spanish weather 

data from 2019. 05. 18. 12:00 and French and Italian 

weather data from 2019. 05. 17. 12:00 were used instead 

of the Spanish, French and Italian weather data from 

2019. 05. 18. 12:00 for the forecasting of the solar energy 

generation in Spain for 2019. 05. 18. 13:00. However, 

this in not necessarily the best approach for all data sets 

and cooperation. This is not surprising, since the 

geographical area can strongly influence the optimal 

input parameters for the forecasting model [6]. However, 

it can be concluded that with the individual optimisation 

of the utilized cooperative data sample-time the 

cooperative forecasting accuracy can be further 

improved.  

 
Figure 2: The decrease of RMSE in Group 1 

 
Figure 3: The decrease of RMSE in Group 2 

 

In our further input optimization experiments, it was 

discovered that adding the previous generation data to the 

input of the cooperative solar generation forecasting can 

greatly improve the forecasting accuracy. With this added 

step, an even higher improvement in forecasting accuracy 

can be achieved for all examined data sets. In Group 1, 

the accuracy improved at least by 52% compared to the 

baseline case (for all test cases). In Group 2, the smallest 

improvement was on the French set, around 29%, but the 

highest improvement decreased the error by 69%. 

It can also be observed that while all the data sets benefit 

from the cooperation, the extent of this benefit is not 

equal. As Figure 2 and Figure 3 show, in Group 1 the 

amount of the error decrease (in percent) for the separate 

data sets is much closer than in Group 2. 

Naturally, in most cases there was a runtime trade-off 

when using the cooperative forecasting approach due to 

the increased data volume, but interestingly, in some 

cases (e.g. Spain one-hour-ahead forecasting with 

generation data) the cooperation also decreased the 
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training time, most likely due to quicker convergence of 

the ANN. 

 

5.  Conclusion 
 

This paper discussed how solar photovoltaic power 

forecasting can play a crucial role in the planning and 

modelling of the solar photovoltaic plants, as well as in the 

managing of the power demand and supply [9]. For this 

purpose, we implemented an artificial neural network 

based one-hour-ahead solar generation forecasting model, 

which was tested on different large-scale data sets in 

different scenarios. A custom-made ANN-Based Large-

Scale Cooperative Solar Generation Forecasting technique 

was introduced, which was optimized using different input 

parameters. 

With cooperative data sharing introduced between 

previously separately functioning (geographically close) 

data sets, a great improvement in forecasting accuracy can 

be achieved. By cooperative data sharing only, the RMSE 

of the forecasting decreased at least by 12%, but an error 

reduction of even 50% could be achieved. With an 

optimization of the utilized cooperative data sample-time 

and through the inclusion of previous generation data as 

input parameters, the error of cooperative forecasting can 

be further decreased – in our test cases, the RMSE 

reduction was as high as 29 to 69% compared to the 

baseline case. 

Further directions of improvement for our work include 

finding the optimal number of data sets for a cooperative 

group, as well as establishing a set of criteria for the 

optimal selection of specific data sets for respective 

cooperative groups. 
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