Fault location in electrical distribution systems using PLS and NN
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Abstract. This paper discusses about voltage sags fault
location using a temporal and phasorial descriptors. A
dimensionality reduction technique is used to extract the
significant features from voltage sags descriptors and a Neural
Network is applied to locate the fault.
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1. Introduction

The concept power quality has received more importance
by new regulation in the electrical sector. It has become
a very important reason to encourage researches in fault
location. The fault origin can be due to: the electrical
facility operation, operation of specific non-linear loads,
short circuits, among others. These faults are usually
transmitted to the whole electrical system. Responsibility
of possible damages caused to customers is assigned to
utilities [1]. Consequently, the utilities are interested in
monitoring (characterizing, recognizing, location) of
these perturbations.

The voltage sags are registered fault in a 25kV Spain
Electrical Facility. In this work, the goal is to locate
faults based on temporal [6] and phasorial descriptors [9].
Descriptors used are; four temporal and three phasorial
descriptors. Temporal descriptors are: (1) three phase sag
magnitude, (2) three phase sag duration, (3) starting time
and (4) ending time[6] (see figure 1). Phasorial
descriptors are (1) the minimum, (2) the maximum and
(3) the average PNfactor where PNfactor is the difference
between positive-sequence and negative-sequence [9].

The voltage sags location can be either distribution or
transmision voltage level [5]. Partial Least Squares (PLS)
and Neural Network (NN) are used as solution tools.
PLS is a dimensionality reduction technique. It is used to
extract significant features from voltage sags descriptors.
Then, NN are applied to locate the origin of the fault.

This paper is organized as follow. Sag attributes are
presented in section 2. In sections 3 and 4, two tools
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(PLS and NN ) are presented to solve the problem. In
section 5, a numerical example is developed using
voltage sags recorded in 25kV facility during one year
period. Finally, conclusions and acknowledgments are in
sections 6 and 7.

2. Definition of Significant Voltage Sag
Descriptors

Voltage sags have been characterized in this work by
using temporal and phasorial descriptors. Temporal
descriptors are obtained from measurements of the
duration and magnitude. The phasorial descriptors are
represented qualitatively according to the method
presented in [9].

A. Temporal descriptors

Temporal descriptors depicted in figure 1 are [9]:

1) Three-phase sag magnitude (H): It is defined as
the maximum drop of voltage of three-phase
power system during the sag.

2) Three-phase sag duration (TDH): It is defined
as the maximum time during the rms voltage in
the three phase power system, is lower to 0.9p.u.

3) Starting time (TIH): It is defined as the moment
immediately the rms voltage in the three phase
power system, lower of 0.9p.u.

4) Ending time (TFH): It is defined as the moment
immediately the rms voltage in the three phase
power system, recuperate to 0.9p.u.
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Fig. 1. Temporal descriptors in voltage sags
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B. Phasorial descriptors

A technique proposed in [9] to characterize sags, has
been applied, which enables a characterization through
one complex voltage, without significant loss of
information. The method is based on the decomposition
of the voltage phasors in symmetrical components.

Positive-sequence voltage\71, negative-sequence voltage
\72 and zero-sequence voltage\70 are calculated from the

complex phase voltagesV, , V, and V, as follows:

where

11,
[f:_§+§J\’3 (1)

The voltage sag type indicates which phases are involved
in the event. The seven basic types are given in figure 2.
Balanced voltage sag (type A) is due to an equal drop in
the values of voltage in the three-phases. Unbalanced
voltage sags (types C and D) depend on the phases
involved. The C-types are voltage drops between two
phases: type Ca is a voltage drop between phases b and c,
type Cb between phases a and c, and type Cc between
phases a and b. The D-types are voltage drops in one
phase: type Da is a voltage drop in phase a, type Db in
phase b, and type Dc in phase c.

a)
Fig. 2. a) Three-phase balance voltage sag, b) six types of
three-phase unbalanced voltage sags

The voltage sag type is found from the angle between
positive-sequence voltage \71 and negative-sequence

voltageV,. The classification method is described in
more detail in [1] and summarised as follows:

rr.u_f,rh-{ﬁ.l—ﬁ) )

k = round (
600

where,

k=0: type Ca
k=3: type Da

k=1: type Dc | k=2: type Cb
k=4: type Cc | k=5: type Db

Knowing the voltage sag type, the negative-sequence
voltage can be calculated back to the corresponding value
for prototype voltage sag:

V; = yemike” v
PN-factor F is obtained from:
F-V,+7 3)
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The proposal is to use PN-factor average, PN-factor
minimum and PN-factor maximum to characterize three-
phase unbalanced voltage sags. In table | are showing
some events with our temporal descriptors and fasorial
descriptors.

TABLE I. - Voltage sags descriptors

FIF
average

0,939
1.0151
0E7F

File TIH(MS) | TFH(MS) | TDH{MS) H PMF min | PNF max

SALT_04-05-2002_14 22 34
SALT_(MH05-2002_15_67 33
SALT_06-05-2002_16_00_10

482960
259760
47 8330
&62886
21590

1472534
2704238
214,1554

100,3574
184.4575
166,3295

22p8:32
234002
22583
205580
275412

09132
10022
07827

09812
1.0221
10352

SALT_11-042002_20_31_01 246,6730 160,3893 07935 1.0123 084930

SALT_12.07-2002_15_50_13 1825818 100,8827 0,743 09850 08313

3. Partial Least Squares (PLS)
A. Brief introduction

PLS, also known as Projection to Latent Structures, it is

a dimensionality reduction technique maximizing the
covariance between the predictor matrix X and the
predicted matrix Y for each component of the space. The
predictor is let the data in training set, consisting of m
variables and n samples for each variable [7], in this
research the predictor matrix X has 7 and 100 different
events by each variable. This information is stacked into

amatrix X e R™® given by:

"TH TFH TDH H
45806 14725 10036

85976 27043 18444
47834 21416 16632

PIF
22683 09172

2349 1.0022
22899 079827

PHF e PMF,..
09812 0939774

10281 10151
1.0352 08747

LTI ]

1.0255 10077 |ao
05849 05701 900

4627 1.0017
10708 09482

127.19
33281

50625 17751
[ 49,375 22636

The predicted matrix contains the fault location,

Y e R™® where 1 denoted fault in distribution and 0
represent transmission fault.

PLS computes loading and score vectors that are
correlated with the predicted block while describing a
large amount of the variation in the predictor matrix.
PLS require calibration and prediction steps. The most
popular algorithm used is PLS to compute the parameters
in the calibration step is know as Non-Iterative Partial
Least Squares (NIPALS) [7][8].

To effectively extract the information in the data relevant
to process monitoring, it is often necessary to pretreat the
data in the training set. The pretreatment procedures
consist of autoscaling.  Autoscaling standardizes the
process variables (see table II). It assures a similar
influence of each descriptor when dimensionality
reduction technique is applied [7].

TABLE II. - Autoscaling descriptors

PHF
average
0.099807

File TIH{mMS) | TFH{mMS) | TDOH{mMS) H PMF min [ PMF mmax

SALT_D4-05-2002_14 22 34 | 0081591 0.7 77 0029904 | 0053963 | 0.09829 0098685

SALT_04-05-2002_15_57_33
SALT_08-05-2002_15_00_10
SALT_11-04-2002_20_31_01

SALT_12-07-2002_15_60_13

0.11292
0052823
0.113:32
0.10717

0.069378 0.059962 | 0.055365 0.10249
0.08727
008589

0080527

0.10128
010198
0.099729
0007235

010673

0.059042 009056 | 0.053072 0091972

0063293
0095841

0.04778
002000

0.099234
0069013

00573
0087400
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The goal of PLS is to determinate the loading and score
vectors which are correlated with Y while describing a
large amount of the variation in X. This is achieved by
decomposing X and Y into a combination of loadings P
and Q (these are determinate of orthogonal vectors),
scores T (it is the projections of the loading vectors
associated with the first singular values), weights W and
residual matrices E and F such that [8].

X=TPT+E (4)

Y =TQ" +F (5)

The matrix product TPT can be expressed as the sum of
the product of the score vectors t; (the j™ column of T)
and loading vectors p; (the j™ column of P), similarly, Y is
decomposed as the sum of the product of the score
vectors t; (the j™ column of T) and loading vectors g; (the
j™ column of Q) [7].

N
X = Z r:p}r +E (6)
=1
N
Y = z :‘_?-q-‘r*" +F (7

i=1
where N is the number of principal components deemed
to be significant. It is possible to make a model of
voltage sags with Q-statistic and D-statistic. The Q-
statistic is a measure of the lack of fit with the established

model. The value for this model is 0.0104. It is defined
as follows:
Q= Y uf @
:'.=NH+1

where m is the number of process variables (descriptors)
[4]. Q indicates the distance between the actual values of
the event and the projected values onto reduced space.

The Hotelling T? or D-statistic statistic, measures the
degree to which data fit the calibration model:

N
T? =3 tio='t] 9)
=1

where 0=0.5021 is the standard deviation. The value for
this model is 0.0104. The D-statistic gives a measure of
the Mahalanobis distance in the reduced space between
of event and the origin that designates the point with
average event.

Normally, Q-statistic is much more sensitive than T2
This is because Q is very small and therefore any mirror
change in the system characteristics will be observable.
T? has great variance and therefore requires a great
change in the system characteristic for it to be detectable.

Two principal components which explained 95.27% of
the total variability in block X and 65.51% of variability
of block Y (see table I11).

TABLE III. - Principal component extraction

Percent wariance Captured by Regression hodel

——X-Block-—--- —— V-Block-—--

Lv# ThisLyY Total This LY Total
1 G442 8442 61.09 &£1.09
2 1088 93.27 442 B62.91
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B. Detection of “non-voltage sags”™

The charts Q-statistic and D-statistic contain all the
information required to identify voltage sags. Figure 3
show that some event exceeds its limits. Different events
were detected. These events are: interruption,
overvoltage, and not fault recovery. In table IV are
presented the events that exceed limits. The events were
subtract for new model of voltage sags.
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Fig. 3. Q-statistic and D-statisticn\'/vith 95.27% confidence limits

TABLE IV. - Events exceeding limits a)Q-statistic b)D-statistic

Sample File Remark
14 Salt17-07-2002_10-26-4 intermuption
16 Salt22-10-2002_13-37-50 It does not fault recowveny
17 Salt22-10-2002_13-41-11 It does not fault recowveny
12 Salt22-10-2002_12-53-13 It does not fault recovery
7 Acebza 10-12-2002_15-55-28 It does not fault recovery
23 Salt_TRI31-1-2002_15-36-09 owervoltage
a3 Salt_tr35 1402-2005_21-23-56 intermuption
a5 Salt_tr35 1902-2003_13-25-52 interruption
a
Sample File Femark
T4 Salt 16-12-2002_C09-5400 interruption
94 Salt_tr35 1902-2003 13-21-24 interruption
o7 Salt_tr2g 2102-2003_23-22-11 interruption
)

4. Neural Network (NN)
A. Overview

NN have been extensively used in continuous speech
recognition and synthesis, image processing and coding,
pattern recognition, among others. In this work a
feedforward NN has been used to classify voltage sags
according to is location (distribution or transmission).
The classical backpropagation algorithm has been used in
the learning step [2]. The input and the corresponding
target was used to train the network. The input matrix
can is: descriptors (see table 1) or principal components
(table V shows some values). Finally, the target matrix is
composing by 0 and 1, where 1 denote fault in
distribution and O represent transmission fault.
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TABLE V. - Voltage sags Principal components

File 1#PC ZPC
SALT_0405-2002_14 22_34 019217 | -0.040602
SALT_04-05-2002_15_67_33 029908 | 0081717
SALT_08-05-2002_16_00_10 00373 | -0.0Z30%9
SALT_11-04-2002_20_31_01 024972 | -0.085215
SALT_12-07-2002_15_50_13 020830 | 0063561

B. Architecture

This section presents the architecture of the network used
with the backpropagation algorithm for fault location.

1) First architecture: The 7 descriptors are the
input to the NN (see figure 4). The network can
have several layers. First layer has R inputs (7),
weight  matrices  connected to  inputs,
inputsweight (IW) and a bias vector b. Other
layers have a weight matrices coming from layer
outputs, layersweight (LW) and also, a bias
vector b. The sum of the weighted and the bias
forms the input to the transfer function f. In this
work tansig and logsig function have been used
to generate output vector a. tansig for first layer
and hidden layer and logsig for output layer,
because these functions are capable of
approximating any function with a finite number
of discontinuities [2][3].

input
~—
Backpropagation

al=fi(w!.tp+at)

Fig. 4. First architecture

A=A [yt glz ey

al=fl{LyL gl vl

2) Second architecture: From 7 descriptors
previously described, 2 Principal Component
(PC) are obtained using the dimensional
reduction technique by PLS. These PC are the
input to the NN. Statistical process has a similar

behaviour to NN. Descriptors matrix X e R™®

and voltage sags location Y e R™® are the
input to statistical phase. The objective in

statistical phase is to reconstruct a lower
dimension; this is optimizing the relation
between matrix X and matrix . The

optimization is based on minimization of the
mean square error [2][7].

B. Backpropagation learning algorithm

The simplest implementation of backpropagation
learning updates the network weights and biases in the
direction in which the performance function decreases
most rapidly (gradient descent). One iteration of this
algorithm can be written;
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Fig. 5. Second architecture

Wi — Wg — Qpdk

k+1 k kJk (6)

b1 = b — ange @)

where X, is a vector of current weights and biases, gy is
the current gradient and o= 0.05 is the learning rate. The
current gradient is scaled conjugate gradient algorithm
was designed to avoid the time consuming [3]. A
feasibility study has been done to determinate the
topology of architecture. This study is presented in next
section.

5. Results and Discussion
A. Reconstruct a lower dimension with PLS

Spanish Electrical Facility (Endesa Distribution SL) has
provided voltage sags in a 25kV distribution facility. 100
voltage sags were recorded but 11 were subtract because
they is not voltage sags. Therefore, 89 events are used
for location fault. With this change, the total variability is
increase. The attributes depicted in table VI are the new
principal components with its variability.

TABLE VI. - The new principal characteristic extraction

Percent wariance Captured by Regression Model

M BIOCK - —— V-Block——
Lv# ThisLyY Total ThisLy Total
1 8554 8554 6071 60.71
2 1095 5649 571 6642

A new model of voltage sags is developed. Now, model
is more adjusted (see figure 6). The new Q-statistic and
T2 are: Q=0.0086, D=6.2738. Figure 6 shows that some
event exceeds the limits again, table VII are illustrating
faults which are out of new limits. However, these
events were not eliminated because they are voltage sags.

TABLE VII. - Voltage sags are out new limits
a) Q-statistic b) D-statistic

Sample File Remark ‘Waveform
14 Salt 22-10-2002_13_53 13

34 5al09-10-2002_02_23_ 72

# long witage sag duration

A lang uoktage sag duration

&5 Salt 10-12-2002_18_56_12 A lang uoktage sag duration

71 Acebsal 10-12-2002_13_85_28
7E Sal_TRI31-1-2003_15-36-50
a5 Sal_b35 19.02-2008_13-26-52

# lang uoktage sag duration

# long wltage sag duration

& lang uoltage sag duration

Woltage sag and

=] Salt 16-12-2002_08_54 00 :
= Intermuption

Seeb)

aj

Sample File Remark Waveform

Woltage sag and

=] Salt 18- 12-2002_09_54. 00
— Intermuption

Voltage sag
Interruption

26 Salt_t636 21.02-2003_23_23_11

]
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Fig. 6. New model of voltage sags
B. Fault location with NN

Feasibility Study: Applying NN to locate the origin of the
fault, it is necessary to do a topology feasibility study.
Different topologies were tested: 2, 3 and 4 layers and
diverse number layers neurons (see figure 7 and figure 8).
These figures show the error according the number of
neurons by layer. Topology selected is 4 layer and 8
neurons by layer because it is smallest error. Although,
the error in the first architecture is lower than second
architecture, the second is best because in proportion as
the number of neurons for layer grows, the error
decrease.

Topologu feasibility for first architecture

% Error

2

0
number of newrons for layer

Fig. 7. Topology feasibility study of first architecture

The figure 9 shows the error according the epochs
training. The error in the first architecture decrease
quickly. The error in the second architecture decrease
slowly but the final error is lower.

Classification: Finally, the classification has been
obtained. The real location is: 45 voltage sags of
distribution and 44 of transmission. Both architectures
only have one error (see table VIII), but the first
architecture has been benefited with statistical phase
because 11 events are different to voltage sags.

https://doi.org/10.24084/repqj02.264

256

Topology feasibility study for second architecture

% Ertror

1]

0 2 4 B 8 10 12
nurmber of neurons for layer

Fig. 8. Topology feasibility study of second architecture
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‘Stap Training] 'ijvm Stap Training ‘WEWZ;
Fig. 9. a)First architecture b)Second architecture
TABLE VIII. — Voltage level classification
Fault location
voltage level | real | first architecture | second architecture
distribution 45 44 46
transmission | 44 45 43

6. Conclusion

It is interesting to see that the PLS was able to detect 11
events different to voltage sags. Determination of
voltage sags location has been performed thus the
restoration become very quickly. The electrical facility
gains with this information which helps companies in
network normal operation to maintain the continuity
indexes. It is due to the improvement on the response
applying restoration strategies to recover the faulted
system. Planning purpose, the information obtained by
means of this analysis, will be useful to network
companies to locate the zones influenced by voltage sags.
It addresses the location of new sag sensitive equipment.
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