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Abstract. This paper discusses about voltage sags fault 
location using a temporal and phasorial descriptors.  A 
dimensionality reduction technique is used to extract the 
significant features from voltage sags descriptors and a Neural 
Network is applied to locate the fault. 
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1. Introduction 
 
The concept power quality has received more importance 
by new regulation in the electrical sector.  It has become 
a very important reason to encourage researches in fault 
location.  The fault origin can be due to: the electrical 
facility operation, operation of specific non-linear loads, 
short circuits, among others.  These faults are usually 
transmitted to the whole electrical system. Responsibility 
of possible damages caused to customers is assigned to 
utilities [1]. Consequently, the utilities are interested in 
monitoring (characterizing, recognizing, location) of 
these perturbations. 
 
The voltage sags are registered fault in a 25kV Spain 
Electrical Facility.  In this work, the goal is to locate 
faults based on temporal [6] and phasorial descriptors [9]. 
Descriptors used are; four temporal and three phasorial 
descriptors. Temporal descriptors are: (1) three phase sag 
magnitude, (2) three phase sag duration, (3) starting time 
and (4) ending time[6] (see figure 1). Phasorial 
descriptors are (1) the minimum, (2) the maximum and 
(3) the average PNfactor where PNfactor is the difference 
between positive-sequence and negative-sequence [9]. 
 
The voltage sags location can be either distribution or 
transmision voltage level [5]. Partial Least Squares (PLS) 
and Neural Network (NN) are used as solution tools.  
PLS is a dimensionality reduction technique.  It is used to 
extract significant features from voltage sags descriptors. 
Then, NN are applied to locate the origin of the fault. 
 
This paper is organized as follow.  Sag attributes are 
presented in section 2.  In sections 3 and 4, two tools 

(PLS and NN ) are presented to solve the problem.  In 
section 5, a numerical example is developed using 
voltage sags recorded in 25kV facility during one year 
period.  Finally, conclusions and acknowledgments are in 
sections 6 and 7. 
 
2. Definition of Significant Voltage Sag 

Descriptors 
 
Voltage sags have been characterized in this work by 
using temporal and phasorial descriptors.  Temporal 
descriptors are obtained from measurements of the 
duration and magnitude.  The phasorial descriptors are 
represented qualitatively according to the method 
presented in [9]. 
 
A. Temporal descriptors 
 
Temporal descriptors depicted in figure 1 are [9]: 
 

1) Three-phase sag magnitude (H): It is defined as 
the maximum drop of voltage of three-phase 
power system during the sag. 

2) Three-phase sag duration (TDH): It is defined 
as the maximum time during the rms voltage in 
the three phase power system, is lower to 0.9p.u. 

3) Starting time (TIH): It is defined as the moment 
immediately the rms voltage in the three phase 
power system, lower of 0.9p.u. 

4) Ending time (TFH): It is defined as the moment 
immediately the rms voltage in the three phase 
power system, recuperate to 0.9p.u. 

 

 
Fig. 1.  Temporal descriptors in voltage sags 
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B. Phasorial descriptors 
 
A technique proposed in [9] to characterize sags, has 
been applied, which enables a characterization through 
one complex voltage, without significant loss of 
information. The method is based on the decomposition 
of the voltage phasors in symmetrical components. 
Positive-sequence voltage 1V

r
, negative-sequence voltage 

2V
r

 and zero-sequence voltage 0V
r

 are calculated from the 

complex phase voltages aV
r

, bV
r

 and cV
r

 as follows: 

 
where 

 
(1) 

 
The voltage sag type indicates which phases are involved 
in the event. The seven basic types are given in figure 2. 
Balanced voltage sag (type A) is due to an equal drop in 
the values of voltage in the three-phases. Unbalanced 
voltage sags (types C and D) depend on the phases 
involved. The C-types are voltage drops between two 
phases: type Ca is a voltage drop between phases b and c, 
type Cb between phases a and c, and type Cc between 
phases a and b. The D-types are voltage drops in one 
phase: type Da is a voltage drop in phase a, type Db in 
phase b, and type Dc in phase c. 
 

 
Fig. 2.  a) Three-phase balance voltage sag, b) six types of  

three-phase unbalanced voltage sags 
 
The voltage sag type is found from the angle between 
positive-sequence voltage 1V

r
 and negative-sequence 

voltage 2V
r

. The classification method is described in 
more detail in [1] and summarised as follows: 

 
where,  

 
 
Knowing the voltage sag type, the negative-sequence 
voltage can be calculated back to the corresponding value 
for prototype voltage sag: 

 (2) 

PN-factor F
r

 is obtained from: 

 (3) 

The proposal is to use PN-factor average, PN-factor 
minimum and PN-factor maximum to characterize three-
phase unbalanced voltage sags. In table I are showing 
some events with our temporal descriptors and fasorial 
descriptors.  
 

TABLE I. - Voltage sags descriptors 
 

 
 
3. Partial Least Squares (PLS) 
 
A. Brief introduction 
 
PLS, also known as Projection to Latent Structures, it is 
a dimensionality reduction technique maximizing the 
covariance between the predictor matrix X and the 
predicted matrix Y for each component of the space.  The 
predictor is let the data in training set, consisting of m 
variables and n samples for each variable [7], in this 
research the predictor matrix X has 7 and 100 different 
events by each variable.  This information is stacked into 
a matrix 1007xRX ∈  given by: 
 

 
 
The predicted matrix contains the fault location, 

1001xRY ∈ , where 1 denoted fault in distribution and 0 
represent transmission fault. 
 
PLS computes loading and score vectors that are 
correlated with the predicted block while describing a 
large amount of the variation in the predictor matrix.  
PLS require calibration and prediction steps.  The most 
popular algorithm used is PLS to compute the parameters 
in the calibration step is know as Non-Iterative Partial 
Least Squares (NIPALS) [7][8]. 
 
To effectively extract the information in the data relevant 
to process monitoring, it is often necessary to pretreat the 
data in the training set.  The pretreatment procedures 
consist of autoscaling.  Autoscaling standardizes the 
process variables (see table II).  It assures a similar 
influence of each descriptor when dimensionality 
reduction technique is applied [7]. 
 

TABLE II. - Autoscaling descriptors 
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The goal of PLS is to determinate the loading and score 
vectors which are correlated with Y while describing a 
large amount of the variation in X.  This is achieved by 
decomposing X and Y into a combination of loadings P 
and Q (these are determinate of orthogonal vectors), 
scores T (it is the projections of the loading vectors 
associated with the first singular values), weights W and 
residual matrices E and F such that [8]. 

(4) 

 (5) 

The matrix product TPT can be expressed as the sum of 
the product of the score vectors tj (the jth column of T) 
and loading vectors pj (the jth column of P), similarly, Y is 
decomposed as the sum of the product of the score 
vectors tj (the jth column of T) and loading vectors qj (the 
jth column of Q) [7]. 

(6) 

 
(7) 

where N is the number of principal components deemed 
to be significant.  It is possible to make a model of 
voltage sags with Q-statistic and D-statistic.  The Q-
statistic is a measure of the lack of fit with the established 
model.  The value for this model is 0.0104. It is defined 
as follows: 

 
(8) 

where m is the number of process variables (descriptors) 
[4].  Q indicates the distance between the actual values of 
the event and the projected values onto reduced space. 
 
The Hotelling T2 or D-statistic statistic, measures the 
degree to which data fit the calibration model: 

 
(9) 

where σ =0.5021 is the standard deviation.  The value for 
this model is 0.0104.  The D-statistic gives a measure of 
the Mahalanobis distance in the reduced space between 
of event and the origin that designates the point with 
average event. 
 
Normally, Q-statistic is much more sensitive than T2. 
This is because Q is very small and therefore any mirror 
change in the system characteristics will be observable.  
T2 has great variance and therefore requires a great 
change in the system characteristic for it to be detectable. 
 
Two principal components which explained 95.27% of 
the total variability in block X and 65.51% of variability 
of block Y (see table III).  
 

TABLE III. - Principal component extraction 
 

 

B. Detection of “non-voltage sags” 
 
The charts Q-statistic and D-statistic contain all the 
information required to identify voltage sags.  Figure 3 
show that some event exceeds its limits.  Different events 
were detected. These events are: interruption, 
overvoltage, and not fault recovery. In table IV are 
presented the events that exceed limits.   The events were 
subtract for new model of voltage sags. 

 
Fig. 3. Q-statistic and D-statistic with 95.27% confidence limits 
 
TABLE IV. - Events exceeding limits a)Q-statistic b)D-statistic 

 

 
 
4. Neural Network (NN) 
 
A. Overview 
 
NN have been extensively used in continuous speech 
recognition and synthesis, image processing and coding, 
pattern recognition, among others.  In this work a 
feedforward NN has been used to classify voltage sags 
according to is location (distribution or transmission).  
The classical backpropagation algorithm has been used in 
the learning step [2].  The input and the corresponding 
target was used to train the network.  The input matrix 
can is: descriptors (see table I) or principal components 
(table V shows some values).  Finally, the target matrix is 
composing by 0 and 1, where 1 denote fault in 
distribution and 0 represent transmission fault. 
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TABLE V. - Voltage sags Principal components 
 

 
 
B. Architecture 
 
This section presents the architecture of the network used 
with the backpropagation algorithm for fault location. 
 

1) First architecture:  The 7 descriptors are the 
input to the NN (see figure 4). The network can 
have several layers.  First layer has R inputs (7), 
weight matrices connected to inputs, 
inputsweight (IW) and a bias vector b.  Other 
layers have a weight matrices coming from layer 
outputs, layersweight (LW) and also, a bias 
vector b.  The sum of the weighted and the bias 
forms the input to the transfer function f. In this 
work tansig and logsig function have been used 
to generate output vector a.  tansig for first layer 
and hidden layer and logsig for output layer, 
because these functions are capable of 
approximating any function with a finite number 
of discontinuities [2][3]. 

 
Fig. 4.  First architecture 

 
2) Second architecture: From 7 descriptors 

previously described, 2 Principal Component 
(PC) are obtained using the dimensional 
reduction technique by PLS.  These PC are the 
input to the NN.  Statistical process has a similar 
behaviour to NN. Descriptors matrix 1007xRX ∈  
and voltage sags location  are the 
input to statistical phase.  The objective in 
statistical phase is to reconstruct a lower 
dimension; this is optimizing the relation 
between matrix X and matrix Y.  The 
optimization is based on minimization of the 
mean square error [2][7]. 

1001xRY ∈

 
B. Backpropagation learning algorithm 
 
The simplest implementation of backpropagation 
learning updates the network weights and biases in the 
direction in which the performance function decreases 
most rapidly (gradient descent).  One iteration of this 
algorithm can be written:  
 

 
Fig. 5.  Second architecture 

 

(6) 

 (7) 
where xk is a vector of current weights and biases, gk is 
the current gradient and αk= 0.05 is the learning rate. The 
current gradient is scaled conjugate gradient algorithm 
was designed to avoid the time consuming [3]. A 
feasibility study has been done to determinate the 
topology of architecture. This study is presented in next 
section. 
 
5. Results and Discussion 
 
A. Reconstruct a lower dimension with PLS 
 
Spanish Electrical Facility (Endesa Distribution SL) has 
provided voltage sags in a 25kV distribution facility.  100 
voltage sags were recorded but 11 were subtract because 
they is not voltage sags.  Therefore, 89 events are used 
for location fault. With this change, the total variability is 
increase. The attributes depicted in table VI are the new 
principal components with its variability. 
 

TABLE VI. - The new principal characteristic extraction 
 

 
 

A new model of voltage sags is developed.  Now, model 
is more adjusted (see figure 6).  The new Q-statistic and 
T2 are: Q=0.0086, D=6.2738. Figure 6 shows that some 
event exceeds the limits again, table VII are illustrating 
faults which are out of new limits.  However, these 
events were not eliminated because they are voltage sags. 
 

TABLE VII. - Voltage sags are out new limits 
a) Q-statistic b) D-statistic 
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Fig. 6.  New model of voltage sags 

 
B. Fault location with NN 
 
Feasibility Study: Applying NN to locate the origin of the 
fault, it is necessary to do a topology feasibility study.  
Different topologies were tested: 2, 3 and 4 layers and 
diverse number layers neurons (see figure 7 and figure 8).  
These figures show the error according the number of 
neurons by layer.  Topology selected is 4 layer and 8 
neurons by layer because it is smallest error. Although, 
the error in the first architecture is lower than second 
architecture, the second is best because in proportion as 
the number of neurons for layer grows, the error 
decrease. 

 
Fig. 7.  Topology feasibility study of first architecture 

 
The figure 9 shows the error according the epochs 
training.  The error in the first architecture decrease 
quickly. The error in the second architecture decrease 
slowly but the final error is lower. 
 
Classification: Finally, the classification has been 
obtained. The real location is: 45 voltage sags of 
distribution and 44 of transmission.  Both architectures 
only have one error (see table VIII), but the first 
architecture has been benefited with statistical phase 
because 11 events are different to voltage sags. 

 
Fig. 8.  Topology feasibility study of second architecture 

 

 
Fig. 9.  a)First architecture b)Second architecture 

 
TABLE VIII. – Voltage level classification 

 

 
 

 
6. Conclusion 
 
It is interesting to see that the PLS was able to detect 11 
events different to voltage sags.  Determination of 
voltage sags location has been performed thus the 
restoration become very quickly.  The electrical facility 
gains with this information which helps companies in 
network normal operation to maintain the continuity 
indexes.  It is due to the improvement on the response 
applying restoration strategies to recover the faulted 
system. Planning purpose, the information obtained by 
means of this analysis, will be useful to network 
companies to locate the zones influenced by voltage sags. 
It addresses the location of new sag sensitive equipment. 
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