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Abstract – Based on multi-dimensional representation and 
vector calculus definitions, this paper proposes two novel and 
quite simple algorithms for utility applications and power 
quality analysis. The first one is a synchronizing procedure, 
based on a digital PLL (Phase Locked Loop). Its design and 
dynamic behavior are analyzed for single and three-phase 
systems. The second one is a positive sequence detector, which 
uses the proposed PLL to ensure that the positive sequence 
components can be calculated even under distorted waveform 
conditions or frequency variations. Since it is not based on 
Fortescue’s classical decomposition and no special input 
filtering are needed, its dynamic response may be as fast as one 
fundamental cycle. In order to validate the proposed models, 
simulations are shown and experimental results were obtained 
by means of a DSP-based system and a prototype of Power 
Quality Monitor. Furthermore, the PLL algorithm was 
implemented in a selective active filter to confirm the 
expectations in a closed-loop application. 
 
Key words: Phase-locked loop, frequency detection, 
synchronization, fundamental component identification, 
positive sequence extraction. 
 
1. Introduction 
 

Accurate and fast detection of the utility mains 
frequency and fundamental positive sequence 
components are of great interest for power systems 
control and analysis. For correct action, the controllers of 
most electronic equipments, such as power systems 
relays, active power filters, uninterruptible power 
supplies (UPS), controlled rectifiers, FACTS devices, etc, 
must be synchronized with the fundamental frequency of 
the utility voltage [1-10]. In addition, various power 
quality indices and conformity factors should be based on 
the evaluation of the fundamental positive sequence [11-
12]. 

 
For this reason, different algorithms and circuits have 

been proposed in the last years to provide the necessary 
information about the fundamental waveform. Fast 
dynamic response, accuracy and robustness in presence 
of harmonics or transients have been the most important 
issues to deal with. 

A. Fundamental Frequency Identification 
 

The methods of frequency identification are usually 
derived from zero crossing techniques, adaptive discrete 
Fourier transform, demodulation techniques and phase-
locked loop (PLL) systems [1-3]. Each of these methods 
presents advantages and disadvantages, depending on the 
final application, utility disturbing conditions and the 
characteristics of the digital system on which they are 
implemented. 

 
Originally the PLL systems were derived from the 

classical feedback control structure using a phase 
detector, a voltage controlled oscillator (VCO), a low-
pass filter and a comparator. Their use in a vast sort of 
different applications showed useful results in electronic 
devices, power system control and communications 
networks [3]. However, the recent and increasing use of 
digitally processed systems have pointed to the necessity 
of an improved digital PLL design, best suited for this 
new context. 

 
In the case of power system analysis and control, the 

most promising approaches have been derived from 
instantaneous power definitions [6,9,10]. However, 
although these methods are quite simple to implement, 
since they use some analogies to the instantaneous power 
concepts [12,15,16], they could lead to misinterpretation 
by those not familiarized with such relatively new 
concepts. 

 
So, the first aim of this paper is to discuss a 

methodology to design and analyze two new PLL 
structures, for single and three-phase applications. In our 
approach, the power concepts are not necessary, making 
their comprehension easer not only for power system’s 
engineers, but also for anyone interested in frequency 
identification methods. 

 
The proposed digital PLL algorithm is based on 

instantaneous vector calculation. The PLL structure 
derives from inner (scalar or dot) product and properties 
of orthogonal functions. Since the precision and dynamic 
behavior of the PLL is extremely dependent on its 
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proportional-integral (PI) regulator, the design and 
practical aspects of implementing such regulator are also 
discussed. Simulation and experimental results validate 
the model. 
 
B. Fundamental Positive Sequence Detector 

 
Regarding the fundamental positive sequence 

calculation, the most frequent techniques are based on 
some time domain adaptation of the Fortescue´s 
decomposition [14] or on some kind of voltage peak 
detector [1,4,12,13]. 

 
Nevertheless, most of them are derived presuming 

purely sinusoidal grid voltages and do not work properly 
if facing distorted waveforms [4]. Some techniques also 
propose filtering the measured voltages in order to 
identify the fundamental component and calculate the 
positive sequence. Although, if such filters are not self 
adjustable to frequency variations, these techniques can 
be completely ineffective [1,8,12]. 

 
The second goal of this paper is to present a novel 

positive sequence detector, which is based on the 
proposed digital PLL and simple additional algebraic 
manipulation of the measured voltages. Since the PLL is 
used, the method is insensitive to frequency deviations 
and is quite robust to noisy utility conditions. Besides, 
even not been derived from Fortescue´s transform, its 
results are equivalent to those for sinusoidal steady state 
conditions. 
 
2. Multi-dimensional representation and 
vector calculation 
 

More and more multi-dimensional representation and 
vector calculus have been used in modern electrical 
networks analysis [15,16], particularly due to their 
general and well-stated mathematical basis. Accordingly, 
this paper deals with the definitions of inner product and 
orthogonality of instantaneous multi-variable vectors, in 
order to explain the new PLL model and the positive 
sequence detector. 
 
A. Instantaneous Inner Product 
 

According to [17], the inner product (·) of two n-
dimensional instantaneous vectors v =[v1 v2…vn] and 
u=[u1 u2…un] consists of summing up the products of 
terms with similar index in both vectors. Thus: 
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Hence, considering tri-dimensional vectors (e.g. 

three-phase power system voltage or current signals), the 
resulting instantaneous inner product would be:  
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B. Orthogonality Definition 
 
Two non-zero vectors are called orthogonal (⊥) over 

the interval 21 ttt ≤≤ , with respect to a strictly positive 

weight function 0)( >tw , if and only if  [17]: 
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If the weight function is assumed to be the inverse of 

the integration interval i.e. w(t) = 1/(t2-t1) then (3) states 

that the mean dot product ( ⋅ ) of orthogonal signals is 
always zero, independently of their relative amplitudes: 
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In the case of periodic signals, such as trigonometric 

functions, the orthogonality condition applies to the 
function period T: 
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and, considering a digital implementation, expression (5) 
could be represented by the discrete summation: 
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where “∆” is the sampling interval and “m” is the number 
of samples per period (T=m∆). 
 

In the signal processing area, the previous expression 
can also be seen as a moving average filter [18], which is 
quite simple to implement and represents a robust and 
efficient approach to calculate the mean value of time 
domain vectors (variables). 
 
3. Digital PLL using Inner Product Model 
 

The aim is to introduce a PLL design methodology 
valid for single and three-phase (uni or multi-dimensional 
structures) power system’s applications, without using 
the instantaneous power concepts [6,9,10]. So, next 
section starts with the single-phase model. 
 
A. Single-Phase PLL Model 
 

The proposed PLL is shown in Fig. 1 and the central 
idea is to synthesize a unitary sinusoidal function (u⊥), 
which is orthogonal to the input fundamental voltage (v) 
under steady conditions. Thus, the dot product result (dp) 
of this digitally synthesized function with the input 
voltage must converge to zero mean value. The 
instantaneous argument θ, used to synthesize the 
sinusoidal function u⊥, is obtained by integrating the PI 
regulator output ω. While the PLL algorithm seeks to 
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synthesize the unitary sinusoid to satisfy the 
orthogonality condition with the input voltage v, the PI 
controller converts the product error (dperror) into a 
varying correction term (∆ω) that leads to the desired 
input signal frequency ω, used to render the argument 
function θ by simple integration. 

 
A feed-forward reference (ωn =2π fn) may be 

included to improve the initial dynamic performance, 
where fn is the utility nominal frequency. Since the 
interest is to develop a digital PLL, a sampling delay 
function may be added to the PLL model in order to 
represent the sampling process (sampling time Tsa). The 
PI regulator reaches a constant output ω if the mean input 
error is zero ( 0dperror = ). At this condition θ =ω.t  and 
the PLL tracks the input voltage frequency ω, with a 
phase-angle delay of π/2, which guarantees the 
orthogonality condition. Hence, the PLL is able to 
provide the utility’s varying frequency and the 
synchronizing angle (φ = θ + π/2). 
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Fig. 1 – Generalized Single-Phase PLL Model. 

 
 

1) Adaptive Moving Average Filter: 
 

In order to ensure the orthogonality condition, the 
moving average filter (5-6) should be self-adjustable to 
the fundamental period and can be represented in the 
Laplace’s domain as follows: 

 

∫=
T

dttdp
T

dp
0

)(
1

,     (7) 

 
where T is the input fundamental period, which is 
dependent of the instantaneous evaluated angular 
frequency (ω). 
 

Considering the filter impulse response as h(t) and 
using the convolution property (*), its output should be: 
 

∫
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Comparing (7) and (8), it is possible to notice that 

h(t) corresponds to a rectangular pulse defined between 0 
and T, with amplitude equal 1/T, i.e.: 
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where u(t) is the unit step function. 
 

Thus, the moving average filter can be represented as: 
 

sT
e

sH
sT

filter

−−
=

1
)(  .         (10) 

 
Using Taylor series, the non-linear filter transfer 

function (10) can be simplified resulting the linear 
approximation as in (11). And, since the values of the 
terms of superior order are insignificantly small at 60Hz 
(50Hz), they can be neglected, rendering an almost 
constant and unitary gain: 
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In order to ensure that the number of samples in the 

fundamental window (period) is always constant, this 
strategy needs to alter the window size or the sampling 
frequency according to the frequency variations (∆ω). 

 
B. Design Methodology of the PI Regulator 

 
As mentioned before, one important point on 

designing the digital PLL is the correct tuning of the 
proportional and integral PI controller gains, which are 
closely related to its precision and dynamic behavior. 
Although several papers have discussed this problem [5-
7,9,10], there is great interest on a methodology capable 
of providing the best tuning for both, single and three-
phase application.  

 
Assuming that the usual sampling frequencies are 

considerable higher than the systems bandwidth, the non-
linear feedback functions of Fig. 1 can be simplified to 
the linear structure of Fig. 2. This is possible because 
small variations of θ yield the approximation sin(∆θ) ≅ 
∆θ [5,6]. Thus, assuming that the digital integrator and 
the sampling delay function represent the plant to be 
regulated by the PI controller, the resulting open and 
close-loop transfer functions, including the controller and 
the plant become, respectively: 
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The resulting third-order system should ideally be 

https://doi.org/10.24084/repqj02.255 213 RE&PQJ, Vol. 1, No.2, April 2004



controlled with fast time response, good dynamic 
performance and small steady-state error.  It should also 
be robust under transients and noisy input signals. 
However, in practical applications this tuning is very 
difficult to prescribe, the designer may choose to focus 
on the most important features of the particular project.  
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Fig. 2 - Simplified PLL model. 
 

Different tuning methods can be applied [5,9] and, 
with the assumption of small sampling delays, the third 
order system (12) could be reduced to the canonical form 
of second order system (13), without affecting the control 
capabilities [19]. Such consideration is possible since the 
pole relative to the sampling delay, placed in the left side 
of the s-plane, is far from the origin and the other two 
dominant poles.  
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If the gains of the PI regulator are designed 

according to (13), then nPK ξω2=  and 2
nIK ω= , where 

ωn is the closed-loop crossover frequency and ξ is the 
damping factor (usually in the range 0.5 to 1). 
 
C. Three-Phase PLL Model 
 

Frequency-tracking requirements are also quite 
common in three-phase applications, so, it is suited to 
modify the previous structure in order to ensure that it 
works in such systems. This is possible using the multi-
dimensional approach described in (2) and depicted in 
Fig. 3. 

 
Furthermore, the three-phase model leads to the 

same expressions of the single-phase case and the plant, 
open loop and close-loop transfer functions yield 
identical (the simplified three-phase structure is equal to 
that presented in Fig. 2). Thus, all previously discussed 
procedure for tuning the PI regulator is valid for both 
models, as well as the stability and dynamic analysis. 

 
However in this case, the very convenient 

characteristic of automatically rendering constant inner 
product can be achieved in balanced sinusoidal voltage 
conditions, even without using the moving average filter. 
The mean filter may also be neglected if the voltage’s 
distortion or unbalances were not very high, since the 
filtering capability of the PI regulator itself ensures a 
good performance of the PLL. 
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Fig. 3 -Three-phase digital PLL using instantaneous inner 
product of orthogonal functions. 

 
 

D. Measured Voltage Conditions 
 

Since the measured voltages are the only input data 
of the PLL, it is rather important to know how their 
conditions can affect the PLL performance or the PI 
tuning design.  
 

Such analysis has to consider the variations of the 
mean inner product, regarding to different voltage 
conditions: 

1) Sinusoidal and Balanced Voltages: 
 
If the input signals constitute a balanced, three-phase 

sinusoidal voltages set ( ][ cba vvv=v ), then the 
instantaneous dot product of such voltages and the 
synthetic PLL signals ( ][ ⊥⊥⊥⊥ = cba uuuu ) converges 
very fast to zero mean, with a slight PI regulator action. 
In such situation, the PI filtering capacity is not critical. 
 

2) Influence of Voltage Distortions: 
 
With the presence of harmonics in the input voltage 

set, it is necessary to substitute vector v by the 
corresponding harmonic series ( ][ chbhah vvv ΣΣΣ=v ). 
Now the resulting instantaneous dot product will be time 
variant due to the product of different frequency 
components: 
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As long as the fundamental (h=1) input voltages are 

orthogonal to the PLL sinusoidal signals, the mean value 
of the dot product will be zero, that is: 

 

0... 111 =⋅=++ ⊥⊥⊥⊥ uvccbbaa uvuvuv .     (15) 
 

In this case the PLL convergence is not so smooth as 
in the previous case and the PI regulator action should 
help to filter the fast oscillations of the instantaneous 
product around zero mean value, while keeping a good 
dynamic performance and precise tracking capability of 
the PLL. 
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3) Influence of Voltage Unbalances: 
 
If the input voltage set is unbalanced, it is necessary 

to substitute, for this analysis, the input vector v by the 
corresponding sequence components ( ][ csbsas vvv ΣΣΣ=v ), 

where e.g. va = Σvas = va
+ + va

- + va
0  is the sum of the 

sequence components of phase “a”. In this case the 
instantaneous dot product will also be oscillatory around 
zero mean, due to the product of different sequence 
components.  
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Regarding the PI regulator design, the previous 

conclusions could also be drawn, for small unbalances. If 
large unbalances are present, the use of the moving 
average filter provides good dynamic behaviour and 
precise tracking capability at the same time.  

 
4) Line Input Voltages: 
 

Since the functions (
⊥u ), synthesized by the PLL, 

are mathematically imposed to be sinusoidal and 
balanced, they always sum up to zero 
( 0=++ ⊥⊥⊥ cba uuu ). Thus, it is possible to rearrange (2) 
in order to obtain the same dot product using only two-
measured line voltages (17), while reducing the number 
of input voltage sensors for practical applications: 

 

0=⋅+⋅=⋅ ⊥⊥⊥ ccbaab uvuv  uv .     (17) 
 
In addition to the comments about the input voltage 

conditions, it is very important to point out that such 
input signals should be normalized to ensure that the PLL 
works in a large input range. This could be done, e.g., 
assuming per unit values (pu). 
 
4. Positive Sequence Detector 
 

As previously mentioned, this paper also proposes a 
positive sequence detector, which is based on the 
described digital PLL. Shifting the PLL output angle θ by 
90 degrees, we get the synchronizing angle φ = θ+90o. So 
it is possible to generate a set of unitary and balanced 
sinusoidal signals ( 0111 =++ cba uuu ), which are in-
phase with the fundamental of the input voltages 
( ][ cba vvv=v ). 
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The inner product of the measured voltages and such 

in-phase unitary signals (18) yields an instantaneous 
variable represented by the constant value x  and an 
oscillatory part x~ , as following: 

~
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where the constant value x , if correctly scaled, is the 
instantaneous magnitude of the positive sequence, as 
defined by Fortescue for steady conditions. Hence, the 
positive sequence components are defined by: 
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with x.3
2k = . The mean value x  can be easily 

obtained using a moving average filter, similar to that 
described in section 3.   Figure 4 illustrates the proposed 
algorithm.  

 
Using this methodology, only the PLL and the 

average filter dynamics limit the dynamic response of the 
positive sequence detector and, as will be demonstrated, 
such response can be as fast as one cycle of the 
fundamental period. 

 
Except for the moving average filter, the proposed 

technique does not need additional filtering in the 
measured voltages and it is immune to utility voltage’s 
distortions, unbalances or even frequency deviations, 
since the PLL ensures the necessary tracking and filtering 
actions. 
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Fig. 4 – Algorithm of the Positive Sequence Detector. 
 
A. Power Quality Indices 
 

Several power quality indices have been proposed in 
order to evaluate the levels of energy deterioration or 
wasting in the power systems [5,7,11]. In such context, 
the proposed positive sequence detector could be used for 
example to define a symmetry index or conformity factor 
(21), representing the unbalance measurement of the grid 
voltages. This factor is also based on the vector norm 

... concept [17].  
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In balanced and sinusoidal conditions this index is 
unitary and decreases as the fundamental voltage 
unbalances increase. If the voltages are evaluated in per 
unit (pu) of the nominal base, then the mean value of the 
positive sequence index (21) is equal to the amplitude 
factor k defined in (20). 
 
5. Simulation Results 

 
Figures 5 to 7 show the performance of the single-

phase digital PLL, designed with a crossover frequency 
(ωn=20rad/s) and ξ =0.707. In such simulation the 
measured input voltage presents 15% of 7th harmonic. 
Figure 5 illustrates the distorted input voltage (v), the 
digital sinusoidal function (u), which results orthogonal 
to the fundamental of (v) and the PLL output phase-angle 
(θ) in the range [0,2π]. Since the fundamental frequency 
was set to 60Hz, Fig. 6 shows the angular frequency 
convergence by the PLL (w=377rad/s) and shows the 
performance of the moving average filter, which is 
responsible for calculating the mean value of the 
instantaneous inner product (dp_med ≅ 0).  

 

 
Fig. 5- Single-phase PLL: Distorted input voltage, PLL 

quadrature sinusoid and its argument angle θ. 
 

 
Fig. 6- Upper: input and PLL voltages. Middle: PLL frequency. 

Lower: input/output signals of the average filter. 
 

Fig. 7 shows the three-phase input voltages 
( cba vvv ) distorted by 10% with 5th, 7th, and 3rd 
harmonics, respectively and their fundamental amplitudes 
are unbalanced by 20% amplitude reduction in phase “a” 
and 10% increase in phase “b”. Note that the PLL 
preserves its good performance, as long as the internal 
sinusoidal functions “u” are orthogonal to the 
fundamental of the input voltages “v”, as detailed for 
phase “a” in the middle curves. 

 
Fig. 7 - Three-phase PLL: a study case with distorted and 

unbalanced input voltages. 
 
In Fig. 8, an even larger unbalance was applied to the 

input voltages in order to evaluate the positive sequence 
detector. Assuming phase “a” as the peak nominal 
voltage (1pu), phases “b” and “c” were set to 15% and 
30% amplitude reduction, respectively. 

 
As can be observed, in almost one cycle (16.666ms) 

the positive sequence scale factor converged to the 
expected value (in this case k = [1.0+0.85+0.7]/3 = 0.85), 
corresponding to amplitude of the positive sequence 
voltages ( +++

111 cba vvv ). 
 

 

Fig. 8 – Three-phase PLL and Positive Sequence Detector: 
Distorted and unbalanced input voltages. 

 
The input voltages of Fig. 9 present the same 

unbalance conditions of Fig. 8, but in this case without 
the harmonic components. After 200ms, a voltage sag of 
50% was imposed. Again the PLL and the positive 
sequence detector converged after around one cycle. 

 

 
Fig. 9 – Three-phase PLL and Positive Sequence Detector 

during a 50% voltage sag. 
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6. Experimental Results 
 
In order to validate the algorithms in practical 

applications, the proposed models were implemented in 
two different digital systems: a 16 bits fixed point DSP 
(ADMC401) and a prototype of Power Quality 
Monitoring system. The results have shown that the 
classical control tuning procedure (13); provides quite 
robust performance of the PLL for ωn ≅ 25rad/s and ξ ≅ 
0.7, even with distorted and unbalanced input voltages. 

 
Figures from 10 to 13 were obtained using the DSP 

system with a sampling frequency of 12kHz. Fig. 10 
confirms the good performance of the PLL under 
sinusoidal and balanced voltage conditions, since the 
proposed PLL precisely tracks the power system’s 
frequency. 
 

 
 

Fig. 10 – Input phase voltage, the PLL phase angle and 
the corresponding unitary sinusoid. 

 
Fig. 11 shows the input voltage (lower trace) and the 

PLL internal sinusoid (upper trace), shifted by +π/2 in 
order to be in phase with the input voltage, during a 
frequency step (DC trace) from 50Hz to 60Hz. Note that 
the voltage period changes very fast from 20ms to 
16.66ms (16.8ms due to the oscilloscope resolution). This 
test was performed using a programmable AC power 
source. 

 

            
Fig. 11 – PLL action during a frequency step from 50 to 60Hz. 

 
Figure 12 shows how the dynamic performance of 

the PLL is affected by the design of its PI regulator. 
According to the previously described method (13), as 
lower the crossover frequency ωn is, the better is the 
filtering action of the PI regulator, but in expense of the 
dynamic response. 
 

   
(a)                                        (b) 

 
Fig. 12 – Input voltage, the internal in-phase sinusoid and the PI 

input error (a) ωn = 23.63 rad/s; (b) ωn = 90 rad/s. 
 
In order to illustrate the PLL performance in a 

closed-loop power electronics application, an active 
power filter using selective harmonic control [20] was 
implemented and some results are presented in Fig. 13 
(the PLL enables the necessary sampling frequency 
adjustment for correct action of the selective control 
method). The almost clean current waveform confirms 
that the filter tracks precisely the mains frequency.  
 

 
Fig. 13 – Active Filter using PLL in the selective harmonic 

control: line voltage, line current and load current. 
 

Using the Power Quality Monitor (voltage mode), 
with a sampling frequency of 2.4kHz, figures 14 and 15 
show the convergence of the positive sequence detector 
to unbalanced voltage sag of the input voltages without 
and with harmonics presence. Phases b and c were 
reduced abruptly from 1.0pu to 0.7pu and 0.85pu 
respectively. The positive sequence converged in one 
cycle to the expected amplitude value of k=0.85pu. 
 

 
Fig. 14 –The Positive Sequence Detector during unbalanced sag 

- implemented in the Power Quality Monitor. 
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Fig. 15 – Performance of the Positive Sequence Detector, 

facing a unbalanced voltage sag with distortion. 
 
7.  Conclusion 
 

This paper proposes a novel fundamental frequency 
and positive sequence detector, which is essentially based 
on a digital PLL structure, instantaneous vector algebra 
and moving average digital filters. The design 
methodology of the proposed PLL is quite simple and is 
valid for single and three-phase applications. The positive 
sequence detector is not based on the conventional 
Fortescue’s transform and thus, it is an interesting 
alternative to power quality analysis, due to the fast 
convergence and high immunity to utility distortions and 
unbalances. Moreover, if the PLL is used, the positive 
sequence detector becomes insensitive to the utility 
frequency deviations. 

 
To confirm the theoretical expectations, simulation 

tests have shown the overall performance and the 
dynamic behavior of the single and three-phase PLL, 
along with the positive sequence detector. Experimental 
results, using two different digital systems were also 
depicted and the proposed models have shown to be very 
effective even in closed-loop applications, as for 
example, in a selective harmonic active filter, in which 
precise tracking of the mains frequency has been a 
critical issue.  

 
 

Acknowledgement 
 

This research has been supported by FAPESP 
Foundation (Proj. 99/11882-5) and Analog Devices. 
 
References  
 
[1] G. Andria, L. Salvatore, “Inverter drive signal processing 

via DFT and EKF”, IEE Proceedings, Vol. 137-B, No. 2, 
March 1990, pp. 111-119. 

[2] M.M. Begovic, P.M. Djuric, S. Dunlap, A.G. Phadke, 
“Frequency Tracking in Power Networks in the Presence of 
Harmonics”, IEEE Transaction on Power Delivery, Vol. 8, 
No. 2, April 1993, pp. 480-486. 

[3] G.C. Hsieh, J.C. Hung, “Phase-Locked Loop Techniques – 
A Survey”, IEEE Transaction on Industrial Electronics, 
Vol. 43, No. 6, December 1996, pp. 609-615. 

[4] M.C. Jiang, C.T. Pan, “Fast peak detector for variable 
frequency three-phase sinusoidal signals”, IEE Proceedings 
of Systems and Circuit Devices, Vol. 141, No. 3, June 1994, 
pp. 151-156. 

[5]  V. Kaura, V. Blasko, “Operation of a Phase Locked Loop 
System Under Distorted Utility Conditions”, IEEE 
Transaction on Industry Applications, Vol. 33, No. 1, 
January/February 1997, pp. 58-63. 

[6] S.A.O. Silva, P. Donoso-Garcia, P.C. Cortizo, P.F. Seixas, 
“A Three-Phase Line-Interactive UPS System 
Implementation with Series-Parallel Active Power-Line 
Conditioning Capabilities”, IEEE Transaction on Industry 
Application, Vol. 38, No. 6, November/December 2002, pp. 
1581-1590. 

[7] C. Zhan, C. Fitzer, V. K. Ramachandaramurthy, A. 
Arulampalam, M. Barnes, N. Jenkins, “Software Phase-
Locked Loop applied to Dynamic Voltage Restorer 
(DVR)”, IEEE Power Engineering Society Winter Meeting, 
Vol.03, 2001, pp. 1033-1038. 

[8] B.P. McGrath, D.G. Holmes, J. Galloway, “Improved power 
converter line synchronization using an adaptive Discrete 
Fourier Transform (DFT),” IEEE Power Electronics 
Specialists Conference (PESC), 2002, Vol. 2, pp. 821-826. 

[9] S.M. Deckmann, F.P. Marafão, M.S de Pádua, “Single and 
Three-Phase Digital PLL Structures based on Instantaneous 
Power Theory”, 7th Brazilian Power Electronics Conf 
(COBEP03), Fortaleza, Brazil, September 2003. 

[10]L.C.G. Lopes, R.L. Carletti, P.G. Barbosa, “Implementation 
of a Digital and a Dead-Beat PLL Circuit based on 
instantaneous Power Theory with DSP TMS320F243”, 7th 
Brazilian Power Electronics Conf (COBEP03), Fortaleza, 
Brazil, September 2003. 

[11] F.P. Marafão, S.M. Deckmann, J.A.G. Marafão, “Power 
Factor Analysis under Non-Sinusoidal and Unbalanced 
Systems”, IEEE International Conference on Harmonics 
and Quality of Power (ICHQP), Brazil, 2002. 

[12] S.M. Deckmann and F.P. Marafão, “Time based 
decompositions of Voltage, Current and Power Functions,” 
IEEE International Conference on Harmonics and Quality 
of Power (ICHQP), 2000, pp. 289-294. 

[13] W.V. Lyon, Transient Analysis of Alternating Current 
Machinery, John Wiley, Inc., Chapter 2, 1954. 

[14] C.L. Fortescue, “Method of symmetrical co-ordinates 
applied to the solution of polyphase networks”, AIEE 
Transaction, No. 37, 1918, pp. 1027-1140. 

[15]  M. Deppenbrock, V. Staudt and H. Wrede, “A Theoretical 
Investigation of Original and Modified Instantaneous 
Power Theory Applied to Four-Wire Systems”, IEEE 
Transaction on Industry Application, Vol. 39, No. 4, 
July/August 2003, pp. 1160-1167. 

[16] L.M. Tolbert, Y. Xu, F.Z. Peng, J. Chen, J.N. Chiasson, 
“Definitions for Non-Periodic Current Compensation”, 
European Power Electronics Conference (EPE), 2003, 
ISBN: 90-75815-07-7. 

[17] E. Kreyzig, Advanced Engineering Mathematics, John 
Wiley & Sons, Inc., eighth edition, 1999. 

[18] A.V. Oppenheim, R. W. Schafer and J. R. Buck, Discrete-
Time Signal Processing, Prentice Hall Inc, 1999. 

[19] N.S. Nise, Control Systems Engineering, John Wiley & 
Sons, Inc., third edition, 2000. 

[20] F.P. Marafão, P. Mattavelli, S. Buso, S.M. Deckmann, 
“Repetitive-Based Control for Selective Active Filters 
using Discrete Cosine Transform”, 7th Brazilian Power 
Electronics Conf (COBEP03), Fortaleza, Brazil, 
September 2003. 

 

https://doi.org/10.24084/repqj02.255 218 RE&PQJ, Vol. 1, No.2, April 2004




