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Abstract. A joint treatment for signal analysis based in both
Fourier and Wavelet theory is presented.  Distinguishing from
harmonics and transient disturbance components present on an
electrical  signal,  the  former  part  is  extracted  by  means  of
Fourier methods, while the latter is subjected to multiresolution
treatment  in  order  to  split  disturbance  low  frequency
components  with  high  frequency  components.  Numerical
experiments  are  performed  over  a  variety  of  signals  with  a
given harmonic content,  which are classified according to the
kind  of  low  frequency  disturbance  (voltage  sag,  swell  and
momentary  interruption)  and  high  frequency  disturbance
(oscillatory  transient)  present.  In  every  case,  a  good
compression rate is achieved and disturbance components in an
efficient way are extracted. Finally, characteristic plots of the
low  frequency  disturbances  are  obtained  for  classification
purposes.
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1. Introduction

Since  the  earliest  days  of  electric  power,  users  have
desired  that  utilities  provide  electricity  without
interruptions, surges, and harmonic waveform distortions.
Inquiring about such power line disturbances has always
been  a  critical  concern  for  both  utilities  and  users.
Recently,  however,  new  sources  of  disturbances  have
begun to proliferate, just as many pieces of equipment are
becoming  more  sensitive  to  these  same  power
disturbances.
Nowadays,  only  a  few  percent  of  utility  distribution
feeders have a sufficiently severe harmonics problem to
require  attention  [1].  In  contrast,  voltage  sags  and
interruptions  are  nearly  universal  to  every  feeder  and
represent  the  most  numerous  and  significant  power
quality deviations  [2]. 

In  this  environment,  power  quality  analysis  strategies
have usually been divided into those that address steady-
state concerns, such as harmonic distortion, and transient
concerns,  like  those  resulting  from faults  or  switching
transient. Technique such as Fourier spectral analysis are
often applied to steady-state events [3-5] while wavelets,
classical  transient  analysis,  and  computer  modeling are
traditionally used for transient events [6-10].

A. Steady-state events

While  there  are  a  few  cases  where  the  distortion  is
randomized,  most  distortion  is  periodic,  or  harmonic.
That is, it is nearly the same cycle after cycle, changing
very slowly, if at all.  The advantage of using a Fourier
series to represent distorted waveforms is that it is much
easier  to  find  the  system response  to  an  input  that  is
sinusoidal. Conventional steady-state analysis techniques
can be used. The system is analyzed separately at each
harmonic.  Then  the  outputs  at  each  frequency  are
combined to form a new Fourier series, from which the
output waveform may be computed, if desired.
Harmonics, by definition, occur in the steady state, and
are integer multiples of the fundamental frequency. The
waveform  distortion  that  produces  the  harmonics  is
present  continually  or  at  least  for  several  seconds.
Transients  are  usually  dissipated  within  a  few  cycles.
Transients are associated with changes in the system such
as switching a capacitor bank. Harmonics are associated
with the continuing operation of a load.
Usually, the higher-order harmonics (above the range of
the 25th to 50th, depending on the system) are negligible
for  power  system  analysis.  While  they  may  cause
interference with low-power electronic devices, they are
usually  not  damaging  to  the  power  system.  It  is  also
difficult  to  collect  sufficiently  accurate  data  to  model
power systems at these frequencies.

B. Transient events
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Harmonic distortion is  blamed for  many power quality
disturbances that are actually transient. A measurement of
the event may show a distorted waveform with obvious
high-frequency  components.  Although  transient
disturbances  contain  high-frequency  components,
transients  and  harmonics  are  distinctly  different
phenomena  and  are  analyzed  differently.  Transient
waveforms exhibit the high frequencies only briefly after
there has been an abrupt change in the power system. The
frequencies  are  not  necessarily  harmonics;  they  are
whatever the natural frequencies of the system are at the
time of the switching operation. These frequencies have
no relation to the system fundamental frequency.
Continuous  and  discrete  wavelet  transform (CWT  and
DWT)  have  been  used  in  analysis  of  non-stationary
signals and, recently, several papers [11-13] and books
[14-16]  have  been  presented  proposing  the  use  of
wavelets  for  identifying  various  categories  of  power
system disturbances. They are able to remove noise and
achieve  high  compression  ratios  because  of  the
`concentrating'  ability  of  the  wavelet  transform.  It  has
proven  a  powerful  signal  processing  tool  in
communications  in  such  areas  as,  data  compression,
denoising, reconstruction of high-resolution images, and
high-quality speech.
The DWT is implemented using a Multiresolution Signal
Analysis  (MRA)  algorithm [11]  to  decompose  a  given
signal  into  its  constituent  wavelet  subbands  or  levels
(scales)  with  different  time  and  frequency  resolution.
Each  of  the  signal  scales  represents  that  part  of  the
original signal occurring at that particular time and in that
particular frequency band. These individual scales tend to
be  of  uniform width,  with  respect  to  the  log  of  their
frequencies, as opposed to the uniform frequency widths
of  the  Fourier  spectral  bands.  In  the  common  dyadic
decomposition to be used, the scales are separated from
adjacent scales by a frequency octave. These decomposed
signals  posses  the  powerful  time-frequency localization
property, which is one of the major benefits provided by
the wavelet transform. That is, the resulting decomposed
signals  can  then  be  analyzed  in  both  the  time  and
frequency domains. The MRA is an adequate and reliable
tool  to  detect  signal  sharp  changes and  clearly  display
high frequency transient.
The goal of this work is the use of the wavelet analysis as
well as the Fourier analysis for a generic signal (voltage
or current signals), in transient or steady state situations,
for  detecting  power  quality  events.  It  permits
compressing the disturbed signal at  higher compression
rate  than  that  obtained  using  the  conventional  DWT
approach,  and  obtaining  characteristic  plot  signals
corresponding to the type of detected disturbance, which
is useful for classification purposes.

2.  Theoretical framework

One of the key features in signal processing is the choice
of  a  suitable basis  to  represent  in an efficient  way the
kind of considered signals. The Fourier Transform is the
main tool for signal spectral decomposition. It represents
a signal f(t) as a superposition of complex exponential of
definite frequency f and infinite time duration, computing
the inner products of the signal to be analyzed with the
complex exponential, i.e.
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so the original signal can be recovered by means of the
inverse formula
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Due to this infinite duration of the complex exponential
the  Fourier  Transform  describes  very  well  stationary
signals, but it is not suitable for non-stationary signals. In
order to take into account non-stationary events such as
transient  disturbances  we need to  extract  somehow the
local frequency contents of the analyzed signal. To this
end, the original signal can be represented approximately
as  a  superposition  of  scaling  functions J0,k(t),  and
wavelets j,k(t). 

10

0 0
0

2 1 2 1

, , , ,
0 0

( ) ( ) ( )
J jJ

J k J k j k j k
k j J k

f t a t d t 
  

  

      

where the approximation is truncated at  j= J-1, and sets
aJ0,k and  dj,k are the Discrete Wavelet  Transform of the
signal f(t), which can be calculated by
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In expression (3), the first sum is a coarse representation
of  f(t),  where  f(t) has  been  replaced  by  a  linear
combination  of  02J translations  of  the  scaling  function
J0,0. The remaining terms are the detailed representation.
For  each  j level,  2j translations  of  the  wavelet  j,0 are
added to obtain a more detailed representation of f(t).
The  wavelet  approach  is  more  suitable  than  the  usual
Fourier  Transform,  in  those  cases  in  which  we  are
interested  in  getting  good  time  resolution  at  the  high
frequency  range  for  non-stationary  signals.  It  can  be
viewed as a transformation from the time domain to the
time-frequency (scale)  domain. In wavelet analysis,  the
scale we use to look at the data plays a special role.

3. The proposed method

We  now turn  to  the  question  of  how  to  perform  the
desired separated extraction of permanent events, such us
the  harmonic  content  and  transient  events,  such  as
random disturbances (sags, swell, oscillatory transient,...)
for a given signal f(t). In practice, we never work with the
mathematical  function  f(t),  but  we  have  partial
information concerning it, that is, samples at some regular
time interval  Ts.  Therefore, our basic input data will be
the array
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 f(n)  f(tn)  f(nTs),      n 0, 1,..., N – 1,         (6)

where N is the total number of samples of the signal. The
quantities Ts and N determine the maximum and minimum
frequency we are able to resolve. At one hand, according
to  Shannon’s  Theorem,  we  can  not  go  beyond  larger
frequencies than max= s/2, where s= 1/Ts is the sample
frequency. At the other hand, the minimum frequency will
be given by the inverse of the time interval in which we
have samples of the signal, that is, min= 1/NTs.
First, we proceed to extract the harmonic content using
the  standard  FFT  algorithm,  that  is,  we  compute  the
amplitudes  Fk for  the definition of the vector  f(n) as  a
superposition of complex exponential vectors  ek(n)= exp
{i2nk/N),  where k   0 N-1,  and  i is  the imaginary
unit. Each one of this vectors has a definite frequency k=
kmin, so the mapping from k to  is given by

k
S

kk
NT

  (7)

The equation then reads
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being the expression for each one of the phasors (FFT)
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The component of the signal  f(n) at the frequency  k is
then given by

 ( ) cos 2 arg( )k k k n kc n F t F  (10)

We  will  define  fundamental  component  of  f(n) as  the
component corresponding to the value of k= kfun such that
minkfun=  0,  where  0  is  some pre-fixed frequency. We
shall  refer  to  the  harmonic  components of  f(n) as  the
components  of  the  Fourier  transform corresponding  to
integer multiples of kfun, i.e, those values of k belonging to

the  subset   , 2 ,3 , ,fun fun fun funk k k Mk   ,  where

M is the highest order for the last harmonic component
considered,  and  it  has  to  be  set  according  to  some
convention. Finally, we will define the harmonic content
of  the  analyzed  signal  as  the  superposition  of  all  the
previous components, i.e

 ( ) cos 2 arg( )k k n k
k

h n F t F


 
(11)

Once we have extracted the harmonic content making use
of  the  previous  development,  we  now  consider  the
extraction  of  the  disturbances  at  the  high  and  low
frequency range.  We propose  to  define the disturbance
part of the signal f(n) as

(n)  f(n) – h(n)
(12)

The definition seems to be natural in the sense that we
have removed the harmonic part, computed with the help
of the FFT, from the original signal  f(n). Our main goal
will be now two-fold: first, to split with the low and high
frequency  disturbances  respectively,  and  second,  to
compact  the  part  (n).  For  this  purpose,  the  Wavelet
Analysis  turns  to  be  an  ideal  tool,  because  wavelet
functions are in general able to represent high frequency
events  with  good  time  resolution,  unlike  the  Fourier
Analysis.  Therefore  we  can  perform  a  standard
Multiresolution Analysis (MRA) over (n), and keep only
those  m  largest  coefficients  in  the  wavelet  expression
needed to get a pre-fixed precision , in the sense that

( ) ( )
,

( )
mn waveapprox n

n






 (13)

where || || stands for the usual RN norm and waveapproxm
(n)  is  the  wavelet  approximation  to  (n)  using  the  m
largest coefficients in its wavelet series.
Up  to  this  point,  we  have  been  able  to  represent  the
original signal f(n) by M coefficients corresponding to the
harmonic  content  and  m coefficients  corresponding  to
high and low frequency disturbances. Let us summarize
briefly the main steps followed in the previous derivation:
-   Calculate  min,  max and  kfun from the total number of

samples  N,  the  sampling  period  Ts,  and  the
fundamental frequency 0.

-    Calculate the FFT phasor Fk ; k .
-   Select  the  right  values  of  k and  get  the  harmonic

content h(n).
-   Define the disturbances at high and low frequency 

(n).
- Perform the MRA over (n) in order to separate out

the low frequency part from the high frequency part
and 

- approximate it keeping the  m largest coefficients in
the wavelet series transformation to get a pre-fixed
precision.

4. Simulation

In  order  to  illustrate  these  ideas,  we  have  performed
numerical simulations over a variety of signals containing
steady-state  and  transient  disturbances.  Signals  are
sampled  at  s=  6.4kHz  during  a  total  interval  T
equivalent to 32 cycles. In every case we take as our basis
(harmonic) content a fundamental sinusoidal component
at 50 Hz, plus its 5th and 7th harmonics, with amplitudes
1, 0.040 and 0.033 pu respectively.
Besides this steady-state event, we have also considered
other type transient events taken as modulating amplitude
of  the  fundamental  component.  We  have  selected,  in
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Fig. 1. The three types of considered signals (from the top): sag,
swell and oscillatory transient.

virtue  of  its  importance,  three  typical  cases  of
instantaneous variation (fig. 1):
-  The  voltage sag,  represented by a modulating square
wave whose effect is to decrease by a factor (0.1- 0.9 pu)
the signal magnitude over an interval of 0.5- 30  cycles.
Instantaneous interruption shall be considered here as a
special  type  of  sag,  having  decreased  the  signal
magnitude less than 0.1 pu.
- As the opposite case, we consider a  voltage swell.  In
this  case,  the  modulating  square  wave  increases by  a
factor (1.1- 1.4 pu) the magnitude of the signal over an
interval of 0.5- 30 cycles.
-  Finally  we  also  take  into  account  the  oscillatory
transient phenomenon,  that  is,  a  sudden  non-power
frequency change in the steady-state condition of signal
including  both  positive  and  negative  polarity  values.
Typical  spectral  content  between  5  and  500~kHz
(Medium frequency) and duration between 0.02 and 50
ms, were considered in the simulation.
Then, results of these methods are presented in figures 2-
8. The observation window comprises a time interval of
32  cycles  and  256  samples  per  cycle.  This  window is
appropriate for  the study of  the above input signals.  A
convenient threshold is required for detecting the instant
when the disturbance starts. In our case, an input signal
consisting  of  sag  and  oscillatory transient  disturbances
(Signal 1 in fig. 2) is compared with another input signal
consisting of swell and oscillatory transient disturbances
(Signal 2 in fig.2). Both signals show magnitude change
of  0.3pu  for  duration  of  eight  cycles,  and  oscillatory
transient of 1.5pu for 1.3ms duration and 3kHz.
Simulation of the proposed method of signal analysis was
performed  using  the  Wavelets  Extension  Pack  of
Mathcad. It includes two possible strategies: one applies
directly  the  input  signal  to  the  MRA solver,  the  other
extracts previously the harmonic content from the input
sampled-signal before applying the MRA. Figure 3 shows
the  harmonic  content  (frequency spectrum) common to
both  input  signals,  which  was  calculated  using  the  fft
Mathcad  instruction.  According to  the  second strategy,
input signals are filtered to remove the harmonic content
so  that  the  resulting  waveform  is  more

Fig. 2. Input signals considered for testing. Signal1 contains sag
and  oscillatory transient  disturbances;  Signal2  contains  swell
and oscillatory transient disturbances.

Fig. 3. Spectrum (frequency content) for signals of Fig. 2.

susceptible to compression and classification. Figures 4
and 5 show two components resulting from the analysis of
the input signals in the time domain. The signal shown in
figure 4 is the inverse FFT of harmonic content shown in
figure 3. Signals shown in figure 5 contain disturbances
in  the  low  and  high  frequency  bands.  In

Fig.  4.  Harmonic  content  common to  signals  of  Fig.  2.  The
calculation has been done selecting the harmonics components
from the  limited  frequency  spectrum and  taking  the  inverse
Fourier Transform over this subset.
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Fig. 5. Disturbances for the sag and swell cases defined as the
remaining  piece  of  the  original  signal  after  removing  the
harmonic component.

general,  interharmonics  and  high  frequency  harmonic
components due to the disturbance occurrence constitute
this signal.
The  wavelet  transform further  enhances the analysis of
these  disturbances  as  shown  in  figure  6,  where  a
multisignal trace was selected from the MRA results. The
DWT used in this simulation (Daubechies family Db4) is
applied  to  a  digitized  function  with  N=  213 =  8192
samples, getting signals aj(n) and dj(n), where j= 13 is the
maximum index  level.  This  family  Db4  is  particularly
appropriate  to  detect  disturbances  of  high  frequency
(transient)  as  it  is  more  localized  in  time  than  other
members of the same family, for example family Db20.
Each disturbance type produces a characteristic plot, an
example  of  which  is  shown  in  figure  7,  where  low
frequency scales 0-2 are added to obtain the signal used

Fig. 6. Mutiresolution analysis of the disturbances (low and
high frequency) in the sag (Signal 1) and swell (Signal 2) cases,
using the Daubechies-4 basis at ten levels of resolution.
Wavelets Extension Pack of Mathcad has been used.

Fig.  7.  Characteristic  plot  for  the  sag  (Signal  1)  and  swell
(Signal 2) cases.

for disturbance classification. So, sag and swell are types
of  disturbances,  which  can  be  classified  in  the  time
domain using their characteristic plot as detector.
The  algorithm  was  used  for  compressing  the  original
input signal,  Signal 1  shown in figure 2,  and the same
signal without the harmonic content, Signal 1 shown in
figure  5,  for  several  values  of  frequency resolution.  A
significant reduction of coefficients was obtained in the
compression process, being more important in the case of
the second signal. Thus, for J= 10 and the first signal, the
algorithm  reduces  the  signal  samples  to  m=  495
coefficients  taking  the  value  =  0.01.  In  the  same
conditions,  compressing  the  signal  without  harmonic
content the algorithm reduces the signal samples to  m=
390 coefficients. 
For  =0.01,  a perfect reconstruction of the input signal
was  obtained  adding  the  harmonic  content  and  the
compressed signal containing the high and low frequency
disturbances.  Keeping  =  0.1,  the  signal  is  again
reconstructed and is observed to be worse than at = 0.01
(fig. 8). It is obvious that with higher  value less data are
retained  after  compression  and  hence  accuracy  is
sacrificed in reconstructing the signal. However, high  
value is preferred from data communication and storage

Fig. 8. Approximation of the disturbances in the sag case using
the described compression algorithm for the performance index
values  =0.1 and =0.01.
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point of view. Data reduction between input and output
signals was calculated according to index [17]

. .
100,

.
No coeff of compressed signal
No samples of original signal

     (14)

which is a number satisfying 0  100 and reflecting the
efficiency of the method (the closer to zero, the better it
is). For the reconstructed signals of figure 8, we get  =
4.55  per  cent  corresponding to  index  = 0.01,  and  =
0.38 per cent corresponding to = 0.1.

5.  Conclusion

A power quality analysis strategy has been used to divide
steady-state  concerns,  such as  harmonic  distortion,  and
transient  concerns.  The  Fourier  and  wavelet  transforms
for  the  analysis  of  electrical  signals  containing steady-
state or/and transient disturbances have been used.
Several assumptions were considered:
Waveform distortion  that  produces  the  harmonics  does
not change during the measurement interval.
Harmonics  are  integer  multiples  of  the  fundamental
frequency.  The  harmonic  band  to  be  the  part  of  the
spectrum  within  the  range  defined  between  the
fundamental and its 40th harmonic.
Transients  and  harmonics  are  distinctly  different
phenomena and are analyzed differently. 
High frequency transients are usually dissipated within a
few cycles.
Low  frequency  transients  can  be  considered  as
disturbances  with  frequencies  below  the  fundamental
frequency, taken as modulating amplitude to the steady-
state wave.
Frequencies corresponding to transient waveforms are not
necessarily  harmonics;  they  are  whatever  the  natural
frequencies of the system are at the time of the switching
operation.  These  frequencies  have  no  relation  to  the
system fundamental frequency.
Therefore, in each one of the cases we extract the first
forty harmonics  of  the  fundamental  component  making
use of the standard FFT algorithm and perform a MRA
analysis over the disturbance part expecting to distinguish
between low and high frequency disturbances. Finally, we
compress this part according to some prefixed precision.
In  order  to  illustrate  these  ideas,  we  have  performed
numerical simulations over a variety of signals containing
steady state and transient disturbances.
We have added to a nonsinusoidal waveform, in virtue of
its  importance,  three  common disturbances:  the voltage
sag,  the  voltage  swell  and  the  oscillatory  transient
phenomenon.  The  analysis  performed  demonstrates  the
possibilities  of  the  proposed  technique.  So,  the
approximated signal in the lower scale, as derived from
the wavelet analysis, can be used directly for automatic
classification  of  electrical  disturbances  such  as  voltage
sags, voltage swells, momentary interruptions, etc.
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