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Abstract. In this paper a Robust-PCA Deep Learning classification, where the parameters are randomly
algorithm using Synchrosqueezing Wavelet Transform is determined applying the given inequation. These
proposed for PQ disturbances mutli-classification. The algorithm disturbances were selected for its mathematical simplicity
was implemented and programmed in MATLAB using custom and the ease in the implementation.

code. This approach avoids white noise, outliers and overfitting However, the voltage variations imply to have different

phenomena. The Synchrosqueezing Wavelet Transform is
performed and a Robust-PCA mapping is done. External data is
necessary to perform the pretreatment for autoscaling. A Deep
Feed Forward Neural Network is implemented with 5 layers, 3 of
them are hidden layers with more than 1 million parameters to fit.

power characteristics. To deal with these disturbances, it is
necessary to develop new methods capable of detecting and
classifying such disturbances [3-4]. PQ disturbances
definitions are stated in standards IEEE 1159 [5],

The quality of the solution is validated by the cross validation of IEC61000-4-30 and EN50160 [6].

parameters, R2 and Q2. Moreover, mean square error (MSE), the Advanced signal analysis techniques are necessary to
root of the mean square error (RMSE), the mean absolute understand the role of the PQ disturbances. They are
percentage error (MAPE), Akaike information criterion (AIC) and suitable to extract the information from voltage signal
the Schwarz information criterion (SBC) are estimated. The behind of these feature data. The most used technique is
adjusted R2 value is 0.989 and the RMSE obtained is 1.789. The Fourier Transform (FT) for frequency domain. Obviously,
value of R2 is 0.995. All these parameters are calculated over the

this technique is especially recommended for periodic,

test set. . . .
stationary, and linear systems. For a continuous frequency
time varying, it is possible to use the Short Time Fourier
Keywords. Robust-PCA, Synchrosqueezing Continuous Transform observing a time window, but it hast a lot of
Wavelet transform, Discrete Wavelet transform, limitations (STFT) [7]. Other advanced frequency
MATLAB, PQ disturbances, Power Quality. techniques have been developed, trying to overcome the
limitations of FT like Hilbert-Huang Transform (HHT),
1. Introduction Wavelet Transform (WT) and Stockwell Transform (ST)
[8]9].

The extracted features are used for detecting and
classifying [10][11] the electrical events and PQ
disturbances that could appear in the electric network.
Moreover, in recent years, a lot of techniques were
developed for PQ events recognition. For example, neuro-
fuzzy system (NFS) classifier combined with HHT were
performed with very good results [12]. The difficulties of
the HHT algorithm are widely known. This is not the case
of WT,; therefore, some authors have developed an
approach for the recognition PQ using WT and support
vector machines (SVM) [13]. A derived WT technique is
the Curvelet Transform (CV) which makes a projection of
the signal extracted features over a 2D representation [14]
applying SVM, so it is possible to recognize some PQ
events. Other non-frequency-based techniques have been
implemented successfully using compressive sampling
method and reduced PQ disturbances signal dimensionally
[15].

Power quality (PQ) refers to the cleansing of a voltage
signal in power systems at the point of common coupling
in consumer end. It should be disturbance-free in the
electricity supply. Millions of electronic devices are
connected to the grid and they can cause potential
disturbances and deviations from the supplied ideal
sinusoidal voltage waveform. PQ disturbances are defined
as sources of voltage disturbances, which degrade and
might damage modern devices [1]. Thus, to prevent this
issue, electronic devices have included lately prevention
mechanisms considering these PQ disturbances [2].

Two variables are mainly considered to categorize PQ
disturbances in time domain: magnitude and duration. It is
also possible to classify them as two different phenomena:
steady-state and transient state. The usual PQ disturbances
are sag distortion, voltage flickers, oscillatory transient,
swell and interruption. Table I shows the PQ disturbances
considered for the robust-PCA Deep Learning multi-
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Table I. — PQ disturbances considered in the Robust-PCA Deep Learning Multi-Classification.

Symbol PQ disturbance Equation Parameters
Ple Sﬂg y(t) = (]_ — (,((u(t — tl) — u(t — fz))Si[l (Wt) 001 <a<09T< =1 <97,
PQd2 Swell y(t) = (L+a(ult —t,) —u(t —t;))sin(wt) | 01<a<08T<t,—t, <9T,
_(1t=0
ult) = {Ut <0
PQd3 Interruption y(t) = (1 — a(ult — t;) — u(t — t;))sin (wt) 09<a<1,T<t,—t, <9T
PQd4 Flicker y(t) = (1 + a; sin(fwt))sin (wt) 0.1 <a; <0.2,5Hz < f8 <20Hz
PQd5 | Oscillatory transient y(t) = sin(wt) + a et/ Tgin(w,) 01<a<0805T<t,—t; <3T,
(t— ti)(u(tz) — 'M(H)) 8ms <1 < 40ms, 300 < £, <900
PQd6 Harmonic y(t) = a,sin(wt) + agsin(3wt) 0.05 < @3 < 0.15,0.05 < a5 < 0.15
as sin(5wt) + aysin (7wt) 0.05 < a; < 0.15,%af =1

Those techniques based on neural networks (NN) have
been developed exponentially. They can be tagged as
Machine Learning Algorithms. Artificial neural network
(ANN), Deep Learning (DL) and Convolutional Neural
Network (CNN) are the most commonly use strategies.
NN have been applied in a lot of systems for multi-
classification. Moreover, they have emerged as an
important tool for classification and monitoring, being
applied to a diverse classification tasks in industry,
business and science. The input layer of ANN has the
number of features obtained from some time-frequency
transform of the electric signal, the hidden layer has a
sigmoid activation function and, finally, the output layer is
the classification layer [16][17].

This architecture is the base of DL. It has more than three
layers. The results of this technique are quite promising,
providing a solution to most classification problems. DL
has been successfully applied in the areas of speech
recognition, human face identification [34], computer
vision and PQ disturbances classification and monitoring
[18]. The latest proposed technique is CNN, which also
has become a popular technique for classification. It is a
biologically inspired technique and strongly relies on
ANN. The CNN represents a model of human visual
cortex. The applications of CNN are mainly for image
recognition and video classification. Lately, this CNN
have been applied to identify PQ disturbances. The
successful application of this technique can be found in
[19]. The limiting features for these techniques are the
computation time and the complexity in algorithmic
implementation. On the one hand, the algorithms used for
signal analysis have problems such as mode mixing,
intrinsic mode and mother wavelet, among others. In
advanced signal analysis techniques, it is difficult to
interpret the results because of their novelty [20]. On the
other hand, when dealing with neural networks one must
be especially careful with the training technique used. The
backpropagation algorithm and its variations along with
the number of layers, may force to use high performance
computing (HPC) [21]. Therefore, they continue to be
studied and well understood for researching purposes.
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Herein, a custom PQ disturbances classification system
coded in MATLAB is presented. In this application ten
thousand synthetic signals with different PQ disturbances
and white noise controlled are tested using [22].
Afterwards, the Synchrosqueezing Continuous Wavelet
Transform (SCWT) [23] is calculated, and the signal is
denoised. The signal denoised is normalized and scaled
within the range values of the training data set. The robust-
PCA is applied [24]. The robust PCA mapping is used as
input signal along with the normalized and scaled values
of the SCWT. The span time is configured by default and
the train routine used is the backpropagation algorithm for
Deep Learning scheme, which minimizes a continuous
differentiable multivariate function.

2. Robust-PCA, Synchrosqueezing Wavelet
Transform and Deep Learning

A. Robust-PCA

Classical Principal Component Analysis try to solve the
minimization problem,

M — L] M
subject to rank(L) <k

where M = Ly + N is a stack of data points as column
vectors, Lg is a low-rank matrix and N is the perturbation
matrix. The problem can be solved by seeking the best
rank —k of Ly, and using the singular value
decomposition (SVD). The best low rank is found when
the noise Ny is small and independent appropriately
distributed as gaussian noise. Some problems arise in
equation (1) because it requires solving the low-rank and
sparse decomposition problem for matrices of extremely
high dimension with ill-posed condition: non-unicity,
numeric instability, and existence. In practical terms, this
approximation makes it vulnerable with respect to outliers.
In order to improve the optimization process in equation
(1), the problem must be treated as weak formulated
optimization problem. This mathematical concept was
first introduced by Hadamard [25]. A problem is weakly
formulated when the initial conditions and boundary
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conditions are not well defined. Then, the problem can be
solved by convex optimization, as follows,

LIl + Z1IS1l4
L+S=M

min @)

subject to
where [|L]|. is the nuclear norm, given by the sum of SVD.
An estimate solution of the optimization given in equation
(2) is possible using the Lagrange multipliers. Note that
the £; — norm can be used with the shrinkage operator.
The regularization term “suction” the possible outliers
enhancing the regular PCA.

B.  Synchrosqueezing Wavelet Transform

Synchrosqueezing wavelet transforms was developed for
analysing auditory signals [25]. This technique tries to
tune a time-frequency representation. The behaviour is
estimate it as a local value in R(t, w). The continous
synchrosqueezing wavelet transform of a signal s(t) can
be defined as,
1 t—b 3)
W, @) = [ saty () ar

where a and b are the scale and transportation values
related with frequency and time, respectively. ¥ is the
mother wavelet, which extracts the instantaneous
frequency. Using Plancherel’s theorem, it is possible to
rewrite equation (3),

W, (a.b) = [ s©arpapeas @

A = b
=—az2
4”a Plaw)e
Since P(¥) is concentred in wy, therefore, the value of
wavelet in (a,b) must to be in a = wy/w. So, the
candidate for the instantaneous frequency wg(a, b) for the
signal s(t) is,

_10W (a,b) )

wy(a,b) = —i(W(a, b)) b

W(a, b) can be computed using the discrete values for
ay, a; — a,_; = (Aa)y. The Synchrosqueezed transform

Ts(w, b) estimated for the w,; centers, [wl - %Aw, w; +
%Aw], is defined,

3
_ -3 (6)
Ts(w, b) = Aw™" Lo Ws(ay, ba,* (Ba);

The  equation (6) defines completely  the
Synchrosqueezing Wavelet Transform and gives a
concentrated instantaneous frequency in the time-
frequency plane.

C. Deep Learning
The machine learning is fundamentally a non-linear

optimization problem. Neural Networks specifically
optimize over a compositional function,
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Fig. 1. General appearance of the hidden layer for proposed
Deep Learning scheme.

J(8) = %ZZ [~310g (ho(x®),) - 1

i=1 k=1
- y,fi)) log (1 — he(x(i))k)]

| 2 )

=1 j=1k=1

(M

where T is the cost function and h(x!) is the activation
function. The parameters are 6 for each layer 1. The train
routine used is the backpropagation algorithm for Deep
Learning scheme which minimizes a continuous
differentiable multivariate function. The backpropagation
algorithm uses Polack-Ribiere flavour of conjugate
gradients. This technique is used to compute search
directions and the approach for line search uses a quadratic
and cubic polynomial approximation. To prevent
overfitting, a regularization £, is proposed. The best
sparsity promoted coefficient (4) is estimated using L-
Curve, where the parameters norm is used as residual
function. The L-curve is calculated as log-log plot and it is
a useful graphical tool for displaying the variation of
sparsity promoted coefficient (4) and its residual. The
Deep Learning scheme is presented in figure 2 as Deep
Feed Forward Neurons. The number of layers is five,
which three of them are hidden layers, the first one is the
input layer and the last one is the output layer. A
preprocessing step is performed on data. It is not a
convolution, so it cannot be considered as convolution
neural network, but a Deep Feed Forward Neural Network.
The train set for the Deep Learning was performed using
exclusively simulations data set. The simulation data set
was created with the help of a MATLAB GUI developed
in [22]. This application is intended for PQ simulations
and FT, STFT and WT algorithms were implemented. Six
PQ disturbances were selected and randomly combined to
generated over five cycles at 16 kHz, that is 1600 points.
The number of simulations performed was five thousand
trying to cover all possible real situations. However, real
electrical quality measurements were not yet included.
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Fig. 2. General scheme for the multi-classification pipeline. Voltage signal input is transformed using SCWT. Afterward, a robust
PCA algorithm is applied for cleaning the time — frequency plane. Then, a normalized and scaled operation is performed. Finally,
the normalized and scaled values are the input of the Deep Feed Forward Neural Network.

3. Deep Feed Forward Neural Network
Architecture

The number of hidden dense layers is five. The number of
neurons per unit is 281,600 from the first to fourth layer
and the last layer has six output neurons, one for each PQ
disturbance to classify. Before of the first layer neuron
input the data is pre-processed. First, a Synchrosqueezing
Wavelet Transform is performed. The output is a matrix of
704 rows with 1600 columns. In order to clean de SCWT
spectrogram, a robust — PCA 1is applied. This process
filters the white noise and removes the outliers in the
spectrogram. Afterward, a normalization and scaling step
is applied for data curation. The normalized set the data as
parts of unit and the scaled centers and balance in base of
average and standard deviation.

In figure 1, it is shown how a Deep Learning hidden layer
looks like. Each cell represents the weight for each

Synchrosqueezing

WwiaveLet Transform Robust PCA

position of the SCWT matrix. The values are represented
as black — white scale. The output layer is configured to
set 0 or 1 for each PQ disturbance considered. In table I, it
is shown the six PQ disturbances considered.

Robust — PCA is applied to the spectrogram to preventing

outliers and signal noise. This technique uses the
shrinkage operator, which make a multivariate
discrimination. All spectrogram sequence is presented in
figure 3. The external data are the average and the standard
deviation of the training set. With the average and the
standard deviation, it is possible to do a pretreatment
method, called autoscaling, equation (8).

Xij — Xj (3

Normalized andScaled Ja——f 1 = =

@ Input Layer @ Hidden Layer @ Output Layer

Fig. 3. General scheme for the multi-classification with a spectrogram sequence visualized. To the Voltage Signal input, it is applied a
white gaussian noise and then it is transformed using SCWT. Afterward, a robust PCA algorithm is performed. The scale and
normalization are done, which it is the input to the Deep Feed Forward Neural Network.
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3. Results

Given the data set, five thousand simulation data are
splatted in three pieces. The first piece is called the training
set, this is a usual piece. The second piece of this data is
called cross-validation set. The cross-validation is used to
check the model, where it is possible to change the neuron
numbers of each hidden layer and check the variability of
the sparsity promote coefficient. Finally, the last data set, it
is called test set. Within this test set, it is possible to evaluate
the generalized error committed. The typical ratio for
splitting the data set are 60% for training set, 20% for cross-
validation set, and 20% for the test set.

The quality of the Robust-PCA Deep Learning
multiclassification using Synchrosqueezing Wavelet
Transform is validated by the cross validation of
parameters, R2 and Q2, in order to make the comparison
with different Deep Feed Forward Neural Network
variations. The RMSECYV value is 1.40. The mean square
error (MSE), the root of the mean square error (RMSE) and
the mean absolute percentage error (MAPE) were
calculated yielding the results in the table II. Moreover, the
Akaike information criterion (AIC) and the Schwarz
information criterion (SBC) is estimated, obtaining good
multiclassification for the proposed model. The adjusted R2
value is 0.978.

Table II. — Evaluation parameters obtained for Robust-PCA Deep
Learning Multi-Classification.

R2 R2 | MSE | RMSE | MAPE | AIC | SBC
Adj.
0.995 [ 0989 [2.88 [ 130 [0.130 [222 [119

To evaluate the generalized error, the Robust-PCA Deep
Learning Multi-Classification was evaluated with a test set.
On the one hand, the R2 parameter obtained is 0.989. On
the other hand, the RMSE obtained is 1.789. As expected,
the generalized error is greater than the error obtained using
training set or cross-validation set.

4. Conclusion

In summary, we have developed novel multi-classification
PQ disturbances predictor, which improves the accuracy of
the PQ disturbances classification with respect to others
proposal models. The PQ disturbances classification system
is coded in MATLAB. To perform the PQ disturbances
multiclassification, the Synchrosqueezing Continuous
Wavelet Transform (SCWT) is used. The resulting
spectrogram is fed into the Robust-PCA, which can filter
the noise and remove the outliers. The Robust-PCA
mapping is scaled and normalized using external data.

The Deep Learning backpropagation algorithm used is
programmed entirely in MATLAB. The optimization was
performed using an ASUSTeK Intel Xeon Gold 5220 64bits
with NVIDIA GeForce RTX 3090 and 128 GB RAM
server. The computation time for training the Deep
Learning Schema is the limiting issue because the
backpropagation algorithm must train more than one
million parameters for the light scheme. It is highly
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recommendable to use high performance computing
servers and parallel computing to train the data set.

For the future work, it is advisable to use real data both for
training and for calculation of the generalized error.
Moreover, to get a better model it is necessary to extend
the L-curve for the sparsity promote coefficient
estimation. A benchmark with others framework, like
Keras and Tensorflow, could be used for performance
measurement and result comparison. Finally, a more
complete dataset of PQ disturbances could be used.
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