
 

 

19th International Conference on Renewable Energies and Power Quality (ICREPQ’21) 
Almeria (Spain), 28th to 30th July 2021 

Renewable Energy and Power Quality Journal (RE&PQJ) 
 ISSN 2172-038 X, Volume No.19, September 2021 

  
 

Automatic Detection of Voltage Notches using Support Vector Machine 

Rongzhen Qi1, Olga Zyabkina1, Daniel Agudelo Martinez1 and Jan Meyer1 
 

1 Institute of Electrical Power Systems and High Voltage Engineering 
Technische Universität Dresden 

01069, Dresden (Germany) 
Phone/Fax number: +49 176 31206344, e-mail:  rong_zhen.qi@mailbox.tu-dresden.de 

 
Abstract. This paper presents a comprehensive framework for 
voltage notch analysis and an automatic method for notch 
detection using a nonlinear support vector machine (SVM) 
classifier. A comprehensive simulation of the notch disturbance 
has been conducted to generate a diverse database. Based on 
domain knowledge and properties of power quality disturbances 
(PQDs), a set of characteristic features is extracted. After feature 
extraction, a set of most descriptive features has been selected with 
decision tree (DT) algorithm, and a nonlinear SVM classifier has 
been trained. Finally, the detection efficiency of the trained model 
is presented and discussed. 
 
Key words. Power quality, feature extraction, voltage 
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1. Introduction 
 
Over the past years with the development of modern power 
systems, an increasing number of power electronic 
appliances and devices have come into use in both 
residential and industrial areas. Due to their nonlinear 
characteristic, these components lead to distortions of the 
current and voltage, which is one particular phenomenon 
resulting in a decrease in Power Quality (PQ). The wide 
variety of PQ phenomena, which cause deviations of 
voltage, current and frequency in a power grid from the 
ideally sinusoidal and balanced behavior are defined as 
power quality disturbances (PQDs). A too strong PQD can 
result in serious consequences, such as malfunction, 
damage as well as additional electrical and economic losses. 
According to a report on PQ in European (EU-25) 
countries [1], “more than 150 billion Euros” in economic 
losses are caused annually by PQ problems. 
A common PQD, especially in industrial power systems are 
voltage notches, also called notching. Voltage notch is a 
steady-state PQD with periodic steep voltage reduction [2]. 
Voltage notches are caused by the commutation of 
controlled line-commutating rectifiers and can cause 
problems in power systems, such as the malfunction of 
phase sequence relays. Moreover, noticeable oscillations in 
voltage and current excited by notches (commutation 
swings) can cause damage to capacitive elements, radio 
interferences, and malfunctions of precise electronic 
devices [3]. According to the IEEE 519 standard [4], the 
two basic indices used to characterize voltage notches are 
depth and area. A classical notch has a rectangular 

waveform. However, as presented in previous studies, the 
waveform may deviate from the classical shape when 
affected by other network components such as capacitor 
bank and snubber circuit [3], as shown in Fig. 1. 

 

  
(a) (b) 

Fig. 1. Voltage waveforms with non-rectangular notches 
(a) with capacitive elements; (b) with snubber circuits 
 
In recent years highly automated artificial intelligence (AI) 
methods have rapidly developed and found wide 
application in different research fields. AI methods have 
been applied to automatic detection and classification of 
different PQDs in PQ measurements and monitoring. The 
detection of PQDs can be generally divided into two main 
stages: data representation and classification [5]. In the 
first stage, the raw data are transformed into an alternative 
data space with possible dimensionality reduction. For this 
step, one of the efficient and widely used technique is 
features-based data representation. With this technique, the 
raw data are represented by new feature vectors. A wide 
range of methods to feature-based representations have 
been developed to facilitate time-series analysis [6]. 
Methods for feature extraction in time series data can be 
generally divided into three domains: time, frequency and 
time-frequency domains. Typical time domain methods for 
feature extraction include stochastic approaches [7], time 
domain decomposition [8], and piecewise aggregate 
approximation [9]. Frequency and time-frequency domain 
methods are based on data transformation, such as Fourier 
transform, or wavelet transform [10]. Another frequently 
used transform-based method is space projection, such as 
phase space reconstruction [11]. 
Once the time series is transformed into a feature-based 
representation, a classification stage is performed. 
Classification presents a supervised task, where a 
classification model is constructed by learning on a 
training dataset with available category membership, i.e. 
labels. The algorithms currently used for PQD 
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classification are machine learning methods such as 
SVMs [12], as well as other AI methods such as fuzzy-logic 
expert systems (FE-systems) [13] and artificial neural 
networks (ANNs) [14]. Even though PQD detection using 
AI method gained a lot of attention, there is a lack of 
research on notch detection with consideration of various 
factors influencing the waveform of the notch.  
Over the past years very few works were dedicated to 
analysis and automatic detection of notch phenomena. 
Therefore, in this work a comprehensive framework for 
voltage notch analysis and an automatic method for notch 
detection using a nonlinear support vector machine (SVM) 
classifier are presented. As result of comprehensive 
simulation of notch along with other PQDs using 
MATLAB®, a representative waveform database has been 
constructed. Based on domain knowledge and properties of 
PQDs, a set of characteristic features is developed. Further, 
the optimal feature vector was selected with the decision 
tree (DT) algorithm and used as the input dataset for the 
SVM classifier. 
The remainder of the paper is organized as follows: Section 
2 introduces the framework of notch simulation, where 
synthetic data with notch and other four PQDs are 
generated. Section 3 gives an overview of the proposed 
methodology, including feature extraction and selection 
with DT, and training and validation of the classification 
model. In Section 4, the developed SVM classifier is 
applied, and performance results are presented and 
discussed. Finally, the conclusions are given in Section 5.  
 
2. Notch simulation 
  
One of the important aspects of a classification task is 
availability of a comprehensive waveform database of the 
studied phenomena. For this work 71 field measurement 
samples of 10-cycle data have been available, which is not 
enough to build well generalized classification model. 
Therefore, to increase the number of available data and 
build a well generalized classifier, different simulation 
scenarios of notch have been conducted to supplement the 
database. Beforehand, theoretical and experimental analysis 
on influencing factors on the appearance of notches were 
conducted to have a more comprehensive selection of 
simulation scenarios for data generation. 
As discovered by previous works, there are several 
parameters or components that influence the appearance of 
notches, including number of commutations within a cycle, 
firing angle of commutation, short-circuit power at the 
connection point, commutation inductance, and loading at 
the DC side of the rectifier. In addition, the snubber circuits 
in parallel with the thyristors in the rectifiers and the 
capacitive elements in the power system such as capacitor 
banks for reactive power compensation also influence the 
appearance of notches in the oscillatory frequency and 
amplitude. The fundamental influencing parameters were 
theoretically analyzed with a mathematical model as 
presented in [3]. The two intuitive indices, notch depth Vdep 
and width 𝜇𝜇 are used to describe the shape of voltage notch. 
The influence of the firing angle α , the system and 
commutation inductance LS and LT, the current at the DC 
side idc , and the amplitude of the voltage source U�m on the 

notch depth Vdep  and width 𝜇𝜇  has been studied. For 
example, with α increasing from 0 to 90°, Vdep increases, 
while 𝜇𝜇 decreases, which means Vdep is positively related 
to α , and 𝜇𝜇  is negatively related to α . The qualitative 
summary of effects of influencing factors on the notch 
depth and area are presented in Table I.  

Table I. - Influence of different factors on voltage notch 

Influencing 
factor 𝑽𝑽𝒅𝒅𝒅𝒅𝒅𝒅 𝝁𝝁 

𝛼𝛼(0 to𝜋𝜋
2

) Positively related Negatively related 

𝐿𝐿𝑆𝑆 Positively related Positively related 

𝐿𝐿𝑇𝑇 Negatively related Positively related 

𝑖𝑖𝑑𝑑𝑑𝑑 Nonlinear Positively related 

𝑈𝑈�𝑚𝑚 Positively related Negatively related 

 
In practice, many other parameters and components also 
significantly influence notching, such as the snubber 
circuit and the network’s capacitive elements. The 
influence of these components is difficult to analyze with 
a mathematical model, though possible [3]. Thus, the 
analysis was supplemented by additional simulations. 
According to the simulation, the additional capacitors in 
system have significant effect on eliminating oscillations, 
while causing global waveform distortion. Moreover, the 
snubber circuit with lower capacitance and resistance leads 
to oscillation of higher frequency. In terms of the types of 
rectifier, the three-pulse midpoint rectifier (M3) has half 
the notches as six-pulse bridge rectifier (B6) within a 
period, while the twelve-pulse bridge rectifier (B12) has 
double number of notches within a period. In particular, 
the rectifier with uncontrolled full-wave diodes causes 
much weaker notches than the controlled ones, thus the 
width and depth cannot be defined clearly. 
  

(a) (b) 

(c) (d) 

Fig. 2. Notch characteristics in synthetic data 
(a) classical notch; (b) notch with uncontrolled diode; (c) notch with 
snubber circuit; (d) notch with capacitor. 
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Additional waveforms have been generated for the 
waveform database for three pulse midpoint rectifier (M3), 
three-phase six-pulse bridge rectifier (B6) and twelve-pulse 
rectifier (B12). Furthermore, each simulation scenario has 
four sub-scenarios, corresponding to different waveform 
characteristics of notches: classical notch, weak notch with 
uncontrolled diode, notch with waveform distortion caused 
by capacitors, and notch with oscillations caused by snubber 
circuit. Overall, 12 scenarios have been simulated, where 
for each scenario, dozens of samples with different 
configuration of parameters from Table I were generated. In 
Fig. 2 examples of overlapped 10 cycles simulated data for 
B6 and 4 sub-scenarios with varying influencing factors are 
presented.  
To effectively train the classification model, four additional 
PQDs frequently appearing in power systems, namely sags, 
swells, harmonics and transients have been simulated. In 
Table II, the overview on data amounts and PQD are 
presented. Each sample has a duration of 8 power cycles. 
Data with notch has been labeled as “notch”, while 
remaining four PQDs as “non-notch”. 

Table II. - Available input data 

Label of input 
data Type of PQDs Number of 

samples 

Notch 

Notches from M3 200 
Notches from B6 300 

Notches from B12 200 
Field 

measurements 71 

Non-notch 
Sags and swells 240 

Harmonics 180 
Transients 120 

 
3. Methodology 
 
The proposed methodology includes three steps: feature 
extraction, model training and validation, and the binary 
PQD classification with non-linear SVM. The flowchart of 
the proposed methodology is illustrated in Fig.  3.  
 
A. Feature extraction 

Feature extraction is a process of designing and calculating 
indices, i.e. features from original or transformed data to 
capture distinguishing and most characterizing properties of 
the data, i.e. different PQD. Based on PQ domain 
knowledge and temporal properties of the data, fourteen 
features have been developed and calculated. In terms of 
effective capturing characteristics of the input data, features 
were derived from original time-series data and momentary 
derivation time-series data, partly in combination with three 
other data representations, namely probability density 
function (PDF), Phase Space Reconstruction (PSR), Fast 
Fourier Transformation (FFT). All representations and 
feature calculation have been applied to each sample, i.e., 
8 - cycles waveform. The summary of extracted features 
and prior required transformations is presented in Table III. 
The momentary deviation time series is defined as: 

𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖) = 𝑢𝑢𝑠𝑠(𝑖𝑖) − 𝑢𝑢𝑠𝑠
(1)(𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑠𝑠 

 
(1) 

where 𝑢𝑢𝑠𝑠(𝑖𝑖) is the original data, 𝑢𝑢𝑠𝑠
(1)(𝑖𝑖) is the fundamental 

wave, 𝑁𝑁𝑠𝑠 is the length of one sample and 𝑠𝑠 is sample order. 
  

 
Fig. 3. Process of method development 

 
In order to characterize data properties of different PQDs, 
first a set of four features namely variance, skewness, 
kurtosis and Shannon entropy were extracted based on the 
PDF of the deviation time series. Furthermore, other four 
features have been extracted already directly from the 
deviation series such as the waveform index, the energy of 
the time series, the sample entropy, and the rate of 
oscillations. The energy feature is proportional to the area 
between the deviation time series and the time axis. The 
waveform index is a common parameter used to describe 
the waveform of a signal, which is calculated as a ratio of 
the RMS value and the average value of the deviation time 
series. Sample entropy is a quantity used to estimate the 
rate at which new information will appear in a time series 
by calculating the likelihood between subsequences of the 
time series. It works well with short time series and time 
series with missing points and can be applied to both 
stochastic signals and deterministic signals [3]. Finally, the 
rate of oscillations has been extracted and is defined as the 
proportion of the number of oscillations in a sample length. 
Suppose three neighboring points are  𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖 − 1),  
𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖), and 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖 + 1) if 
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[𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖 − 1) − 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)] ∙ [𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖 + 1) − 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑(𝑖𝑖)] > 0 (2) 

then the 𝑖𝑖-th sampled point of the deviation series will be 
counted as an oscillation point. 
Next, from original time series data and in combination with 
PSR algorithm and FFT a set of six features have been 
calculated. PSR is a common method used for the analysis 
of time series data. According to the Tackens embedding 
theorem, the representation of a dynamic system can be 
alternatively simplified by projecting a time series of a 
collection of the states of the dynamic system into a higher 
dimensional phase space with a proper chosen step length 
of time delay between each dimension [18]. Based on PSR 
and a suitable threshold, the feature rate of outranging 
points has been extracted. It counts the points at the 
trajectory of the time series, which were located out of a 
given range and calculated as: 

 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜/𝑁𝑁𝑠𝑠 (3) 

where 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 is the number of points falling out of the range: 

 [𝑈𝑈�𝑆𝑆
(1)

− 0.7 ∙ 𝜎𝜎𝑠𝑠,𝑈𝑈�𝑆𝑆
(1)

+ 0.7 ∙ 𝜎𝜎𝑠𝑠] (4) 

where 𝑈𝑈�𝑆𝑆
(1)

 is the amplitude of the fundamental wave, 𝜎𝜎𝑠𝑠 is 
the standard deviation of the time series. This rate is closely 
related to the shape of the time series. 

Table III. - Extracted features 

1st 
transformation  

2nd 
transformation Features  

 

 

 

 

 

Deviation series 

 

PDF 

Variance, 𝜎𝜎𝑠𝑠2 

Normalized skewness, 
𝑆𝑆𝑠𝑠 

Normalized kurtosis, 
𝐾𝐾𝑠𝑠 

Shannon entropy, 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠 

- 

Energy, Ψ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Waveform index, 
𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Sample entropy, 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸 

Rate of 
oscillations,𝑟𝑟𝑜𝑜𝑠𝑠𝑑𝑑 

 

 

 

 

 

Original  

data 

 

PSR Rate of outranging 
points, 𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜 

FFT 

11th harmonic, 𝑈𝑈�𝑆𝑆
(11)

 

23rd harmonic, 𝑈𝑈�𝑆𝑆
(23)

 

Total harmonic 
distortion, 𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢 

- 

Variance of half-cycle 
RMS value, 𝑢𝑢ℎ𝑟𝑟,𝑟𝑟𝑚𝑚𝑠𝑠 

Variance of half-cycle 
peak value, 𝑢𝑢𝑝𝑝𝑟𝑟,𝑟𝑟𝑚𝑚𝑠𝑠 

As is known from previous experiments [15], the 
waveform caused by an m-pulse rectifier has characteristic 
harmonics of the (𝑆𝑆 ∙ 𝑘𝑘 ± 1)th order. Hence, (12 ∙ 𝑘𝑘 ± 1) 
harmonics are the common harmonics for all three kinds of 
simulated converters. Therefore, 11th harmonic voltage, 
23rd harmonic voltage, and the total harmonic distortion of 
voltage waveform were extracted from the FFT spectrums 
of the input data. At last, final two features such as the 
variance of the half-cycle RMS value and half-cycle peak 
value were extracted with the consideration of the 
periodicity of notches.  
As result of feature extraction step, 14 features have been 
developed and calculated over each sample. In total, 1311 
samples of 8-cycles data are represented as a matrix of 14 
feature time series, where length of each feature time series 
is equal to 1311 values.  
 
B. Model training and validation 

The model development stage includes model training and 
validation. To develop and test the classifier, the feature 
matrix received from feature extraction stage has been 
divided into two halves. First half of data is used for model 
training and validation, and second half for model testing.  
The training and validation have been implemented with a 
5-fold cross validation (CV), aiming at optimizing 
hyperparameters of the model and avoiding overfitting of 
the classification. As shown in Fig. 3, each loop of the CV 
contains a complete training and validation process, 
including data normalization, feature selection, parameter 
tuning, and model validation. Data for model training and 
validation were equally divided into five groups. Within 
each loop of the CV, one group was used as the validation 
dataset, and the other four groups together were used as the 
training dataset. Each feature time series in training and 
validation datasets has been normalized individually using 
normalization around mean value: 

 𝑥𝑥𝚤𝚤� =
𝑥𝑥𝑑𝑑 − 𝜇𝜇𝑇𝑇
𝜎𝜎𝑇𝑇

, 𝑖𝑖 = 1,2, … 𝑘𝑘 (5) 

where 𝑥𝑥𝚤𝚤�  is the normalized value for feature 𝑥𝑥𝑑𝑑, 𝜇𝜇𝑇𝑇 and 𝜎𝜎𝑇𝑇 
are the mean and standard deviation values of a feature 
time series 𝑇𝑇, 𝑘𝑘 is the number of feature values in a feature 
time series 𝑇𝑇.  
Further, the normalized training data was used for 
parameter tuning of the decision tree (DT), feature 
selection with the DT, and parameter tuning of the SVM 
classifier. A DT is a typical supervised optimization 
algorithm. It divides the dataset into several subsets 
recursively until some end conditions is met [2]. During 
the automatic development of a DT, possible splits of the 
dataset are evaluated with the Gini impurity [16]. This 
index describes the ability of the features to classify the 
dataset correctly, which can be considered as a convenient 
and reliable indicator for the feature selection. The three 
most important pruning parameters for the end condition 
of the growth of DT are the maximal depth 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 , the 
minimal number of samples in a leaf node 𝑁𝑁𝑚𝑚𝑑𝑑𝑚𝑚,𝑙𝑙𝑑𝑑𝑚𝑚𝑙𝑙  and 
the minimal number of samples for further dataset splitting 
𝑁𝑁𝑚𝑚𝑑𝑑𝑚𝑚,𝑠𝑠𝑝𝑝𝑙𝑙𝑑𝑑𝑜𝑜 . 
The SVM is one of the most popular supervised techniques 
for finding the optimal hyperplane with maximal margin to 
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divide a feature space and is employed in this work. There 
are linear and nonlinear SVMs, which are suitable for 
different application scenarios. Due to the possible 
nonlinear dependencies in the data, the nonlinear SVM with 
a kernel function was selected to solve the classification 
problem in this work. With the nonlinear SVM classifier, 
the classification is conducted in the higher dimensional 
space, whereas the calculation is implemented in the 
original lower dimensional space [12]. In this work, the 
chosen kernel is the radial basis function (RBF), known for 
its flexibility for high dimensional feature space, defined as 
follows: 

 
𝐾𝐾(𝑥𝑥1, 𝑥𝑥2) = exp (−

||𝑥𝑥1 − 𝑥𝑥2||2

2𝜎𝜎2 ) (6) 

where 𝜎𝜎  is the width of the Gaussian function. The two 
hyperparameters of the RBF-SVM that must be tuned are 
the regularization parameter 𝐶𝐶  and 𝜎𝜎 . The grid search 
algorithm was used for parameter tuning of both the DT and 
SVM. 
Once the classifier is trained within each loop of CV, it is 
further applied to the validation dataset to evaluate the 
performance of the classifier. As an outcome of each 
validation stage, the parameters of DT, selected features and 
hyperparameters of SVM have been received and listed in 
the Table IV. As it can be seen from the table, parameters 
of DT and SVM stay relatively stable as well as a set of 
selected features, i.e. features such as 𝑈𝑈�𝑆𝑆

(23)
, 𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢  and 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸. High classification performance of the developed 
method is observed in all 5 cases of validation, i.e. more 
than 96%. However, the highest performance has been 
reached with model in CV 4, i.e. 99.1%, which has been 
selected for final method application on testing data set.  
 
4. Method Application and Results Analysis 
 
According to validation results in Section 3.B the features 
and SVM model of CV 4 are used. Once feature time series 
is normalized using the mean value and standard deviation 
from the training data, SVM classifier has been applied to 
the normalized dataset. It is important to mention, as non-
linear SVM presents a binary classifier two types of labels 
have been assigned to the data. Data with notch distortion is 
labeled as “notch” and data with sags, swells, harmonics 
and transients are labeled as “non-notch”.  
The total and per class accuracy are calculated and 
presented in the Table V. As it can be seen from the table, 
the developed SVM classifier has high total accuracy of 
99.2%, and per class accuracy of 99.24% and 99.14%, 

respectively. Only a slight difference in accuracy for each 
class can be noticed. For notch data class, the decrease is 
equal to 0.8% with 3 misclassified samples as non-notch. 
Whereas for non-notch class, the misclassification is equal 
to 0.9%, i.e. 2 samples out of 234 are misclassified as 
notch. Due to the lack of real data, only 19 samples from 
real measurement data with notch remained in the test 
dataset, but all of them were correctly classified. 
Consequently, all 5 misclassified samples belong to the 
synthetic dataset.  

Table V. Results of model application to test data 

Class Notch  Non-notch  Both  

Accuracy  391
394

= 99.24% 
232
234

= 99.14% 
623
628

= 99.20% 

Three misclassified non-notch samples were swells 
originated from the energizing of a capacitor bank in the 
network. The possible reason of the misclassification can 
be an accompanying impulsive transient during the 
switching operation of capacitor banks upon closing of 
breakers, whereas two misclassified notches were 
simulated with M3C converters. The closer look on the 
data has revealed that the depth of the misclassified 
notches is slightly lower compared to correctly classified 
notch. 
In the Fig.4 the values of three calculated features over 
testing data is presented as 3D plot. The correctly classified 
notch and non-notch samples are depicted as blue and 
green circles, while misclassified notch and non-notch 
samples with blue cross and red triangle, respectively. As 
it can be seen from the Fig.4, the feature values for all 5 
misclassified cases are located in the overlapping area of 
notch and non-notch data.  
The general distribution of the feature values can be 
interpreted with the theoretical basis behind each feature. 
Exemplarily, the sample entropy is a quantity used to 
describe the chaos of a dynamic system, i.e. a sample with 
higher structural complexity is expected to have a higher 
sample entropy. Such higher values of sample entropy can 
be observed in data with harmonics compare to the data 
with sag, swell and transient PQDs. Sags and swells tend 
to have the lowest sample entropy and narrow spectrum 
due to their almost sinusoidal waveform. Exceptionally, 
the phase angle jump (PAJ) of the voltage occurs with sags 
when the ratio of system resistance and inductance changes 
after switching off, inserting large loads, or three-phase 
fault [17], which can be described as an abrupt voltage loss 
and phase shift. In this case, sag and swell samples have a 

Table IV. Results of model validation 

CV No. Parameters of DT 
(𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎,𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎,𝒍𝒍𝒅𝒅𝒎𝒎𝒍𝒍,𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎,𝒔𝒔𝒅𝒅𝒍𝒍𝒎𝒎𝒔𝒔) 

Selected features Hyperparameters of 
SVM (𝑪𝑪,𝝈𝝈) 

Accuracy for 
validation data 

1 (3, 1, 2) 𝑈𝑈�𝑆𝑆
(23)

, 𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸 (18, 9.25) 98.54% 

2 (4, 1, 2) 𝑈𝑈�𝑆𝑆
(23)

, 𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸,𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (17.6, 8) 96.35% 

3 (4, 1, 2) 𝑈𝑈�𝑆𝑆
(11)

, 𝑈𝑈�𝑆𝑆
(23)

,  𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸 (17.8, 7.25) 97.81% 

4 (4, 1, 2) 𝑈𝑈�𝑆𝑆
(23)

, 𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸 (19.4, 9.75) 99.1% 

5 (4, 1, 2) 𝑈𝑈�𝑆𝑆
(23)

, 𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸,𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠, 𝑟𝑟𝑜𝑜𝑠𝑠𝑑𝑑 (19.2, 6.5) 94.85% 
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more widely and evenly distributed spectrum than other 
non-notch data. However, it is important to mention that due 
to nonlinear feature projection of the RBF-SVM, result 
interpretation becomes challenging and is not always easily 
possible.  
 

 
Fig. 4. Visualization of the feature space 

 
5. Conclusion 
 
This paper proposes a comprehensive framework for 
voltage notch analysis and automatic detection based on 
nonlinear support vector machine classifier. A 
comprehensive simulation framework for notching 
phenomena resulted in deeper understanding of factors 
influencing notch depth and area, which are the most 
common parameters to characterize notches. Additionally, 
as result of simulation, it was possible to increase waveform 
data diversity build a well generalized classification model. 
According to results of the method performance, the feature 
extraction based on both domain knowledge and time-series 
properties provides several advantages such as deeper 
understanding the data properties of PQDs, reduction the 
data size and computation time over the conventional 
approaches. In addition, an efficient feature selection 
algorithm such as decision tree can highly reduce the feature 
vectors, decreasing the risk of overfitting and saving 
considerable memory space and computational time. 
Furthermore, the constructed classifier is able to classify 
notch and non-notch waveforms with high accuracy of 
99.2%.  
In future work, several potential improvements can be done 
for the notch detection and classification. For example, 
localization of notching source and application of a multi-
class support vector machine to a more diverse database of 
power quality disturbances. 
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