

19th International Conference on Renewable Energies and Power Quality (ICREPQ'21) Almeria (Spain), 28th to 30th July 2021 Renevable Energy and Surve Chality Journal (RE&PQJ) ISSN 2172-038 X, Volume No.19, September 2021

Permanent Closed-Loop Operation as a Measure for Improving Power Supply Reliability in a Rural Medium Voltage Distribution Network

G. Štumbrger¹, M. Rošer² M. Pintarič, and B. Polajžer¹

 ¹ Faculty of Electrical Engineering and Computer Science University of Maribor Koroška cesta 46, 2000 Maribor (Slovenia) Phone/Fax number: +386 2220 7075,
e-mail: gorazd.stumberger@um.si, matej.pintaric1@um.si, bostjan.polajzer@um.si

> ² Elektro Celja d.d. Vrunčeva 3 a, 3000 Celje (Slovania) e-mail: <u>miran.roser@elektor-celje.si</u>

Abstract. Power supply reliability is one of the critical elements of power quality. Its improvement in medium voltage distribution systems in urban areas is typically achieved by cabling. Unfortunately, this approach is often too expensive to be applied in rural areas. One of the possible alternative solutions that can be used in rural medium voltage distribution networks is permanent closed-loop operation. It requires the introduction of additional reclosers with properly parametrized protection relays enabling directional protection. This paper focuses on the case study performed in the 20 kV rural distribution network of Elektro Celje d.d.. Two feeders, where the reliability of the power supply was low, were analyzed. Results of techno-economical evaluation eliminated cabling as a viable solution. The permanent closed-loop operation was selected and implemented after proper placement and parameterization of relays with directional protection functions. The results of two years operation in permanent closedloop arrangement of feeders show substantial improvement in the reliability of power supply.

Key words. rural medium voltage distribution network, permanent closed-loop operation, power supply reliability.

1. Introduction

Permanent operation with feeders in the closed-loop arrangement is a rarity in medium voltage distribution networks, although the idea is not new [1]. The feasibility study regarding the transition from permanent open-loop to the permanent closed-loop operation of feeders is given in [2]. The reduction in line losses and harmonic distortion that can be achieved in this way is discussed in [3], [4]. The load flow control and voltage profile-related problems are discussed in [5] and [6].

This paper focuses on improving power supply reliability in a rural 20 kV distribution network that supplies a ski resort Slovenia. The power supply reliability was low and must be improved, while cabling of the entire feeder was related to high costs. After performing analysis of the discussed distribution network shown in Fig. 1, where existing switching devices are marked with triangles, a decision was made to replace some of the existing switching devices containing directional protection relay functionalities and introduce some additional switching devices. A schematic presentation of the discussed distribution network with equipped relays (R) is shown in Fig. 2. From this presentation, it is clear that some relays are directional.

Fig.1. Discussed 20 kV network (tringles mark positions of switching devices)

Fig.2. Discussed 20 kV network equipped with switching devices with protection relays (R)

The results of the performed techno-economic analysis focused on the feeders DV Legen Kope (relays R1, R2,

R3, R19, and R20) and DV Dolič (Relays R4, R5, R6, R17, and R18) supplying the ski resort Kope, showed, that this solution enables a substantial improvement in the power supply reliability at approximately 20 % of the costs for cabling.

2. Protection system setting

In order to provide proper operation of the protection system suitable for permanent closed-loop operation of the feeders DV Legen Kope and DV Dolič, proper selectivity and sensitivity of all relay pairs was crucial.

The same procedure for optimisation of timing coordination was proposed for the over current (OC) and for the earth fault (EF) protections. Inverse IEC curves were used [7-9], where the operating time t is calculated by:

$$t = TDS \frac{A}{\left(\frac{I}{I_{\text{pu}}}\right)^B - 1} + T_{\text{add}}$$
(1)

where *I* denotes the rms value of a current measured by a relay. Relay setting are denoted as:

•	$I_{\rm pu}$	pick-up current setting,
•	TDS	time delay setting,
•	$T_{\rm add}$	additional time delay,
•	<i>A</i> , <i>B</i>	constants according to curve type (Table
I).		

Table I. – Constants for IEC inverse curves

Inverse type	A [s]	В
Extreme	80	2

Selectivity is achieved by timing coordination, where the relay intended to operate (primary relay) operates faster than other relays (back-up relays). Definition of a coordination time interval (*CTI*) is demonstrated in Fig. 3 for a fundamental relay pair consisting of a single primary and back-up relay, where I_{SC} is value of the current corresponding to the fault location at primary relay point. In order to achieve selectivity over an entire range of currents, the following conditions must be fulfilled:

$$t_{\rm b} - t_{\rm p} > CTI$$
 and $t_{\rm pu,b} > t_{\rm pu,p}$ (2)

where indices p and b stand for a primary and back-up relay, respectively.

Fig.3. Definition of CTI for a relay pair: operating time vs. fault location (a) and current vs. operating time (b) The relay pairs (RP) for the network configuration shown in Fig.2. are defined in Table II.

Table II. - Constants for IEC inverse curves

RP no.	Primary rel. no.	Backup rel. no.
1	2	1•
2	3	2
3	4	3
4	5	4
5	17	6•
6	18	17
7	19	18
8	20	19
9	7	8•
10	9	1•
11	9	20
12	10	5
13	10	6•
14	11	10
15	12	10
16	13	10
17	14	10
18	15	14
19	16	8•

The time delay and pick-up current settings of all relays were determined in a Differential Evolution (DE) [10] based optimization procedure, where T_{add} was set to 0. The applied objective function is given by (3):

$$\boldsymbol{T}_{\text{opr}} = \sum_{r=1}^{N_{\text{RP}}} (\boldsymbol{t}_{\text{p,r}} + \boldsymbol{t}_{\text{b,r}}) + \boldsymbol{p}$$
(3)

where index r stands for the relay pair, N_{RP} denotes the number of all relay pairs, while p is the penalty. More details will be provided in the full paper.

The results presented in this paper were obtained for the protection system realization without the exchange of GOOSE messages. More details about the protection system realization are provided in [11], emphasizing the exchange of GOOSE messages.

3. Results

The closed-loop operation's performance with the proposed protection scheme is summarized in Table II, where the time, date, and location of the fault that appeared between individual relays (R) marked in Fig. 2 are given. The results show how many customers (Cust.) and transformers (Transf.) 20 kV/0.4 kV were without supply in the cases of faults when the proposed protection scheme, that fully supports permanent closed-loop operation and disconnects only the faulted line sections between relays were used. Moreover, the results also show how many customers and transformers 20 kV/0.4 kV would be without supply considering the same faults with the protection scheme used in the abandoned radial arrangement of feeders. The statistic related to the three events presented in Table III is shown in Tables IV.

Time of	Location				
event	between	L	oop	Radial	
		config	guration	config	guration
		Cust.	Transf.	Cust.	Transf.
25.3.2019	(R4,	49	4	2124	80
at 19:00	R18) –				
	(R3,				
	R19)				
26.04.2019	(R4,	49	4	2124	80
at 16:53	R18) –				
	(R3,R19)				
20.5.2019	(R6) –	1966	75	2588	103
at 07:52	(R10) –				
	(R5.R17)				

Table III. – Fault events in the first half of 2019 in the discussed distribution network

Table IV. - Statistics of events presented in Table III

Event	Interrupted	customers	Duration of interruption (min)	
	Closed-	Radial	Closed-	Radial
	loop		loop	
1	49	2124	23	-
2	49	2124	60	-
3	1966	2588	356	-

Considering definitions for SAIFI (System Average Interruption Frequency Index) and SAIDI (System Average Interruption Duration Index)

$$SAIFI = \frac{\text{total number of interruptions for a group of customers}}{\text{number of all customers}}$$
$$SAIDI = \frac{\text{total duration of interruptions for a group of customers}}{\text{number of all customers}}$$

the results presented in Table V are obtained.

Table V. – Calculated SAIFI and SAIDI (CL=closed-loop, Rad=radial)

	SAIFI			SAIDI (min)			
Event	CL	Rad.	Change	CL	Rad.	Change	
			(%)			(%)	
1	0.023	1	98	0.53	23	98	
2	0.023	1	98	1.38	60	98	
3	0.76	1	24	270.56	356	24	
1+2+3	0.81	3	73	272.5	439	38	

Let us extend the interval of our observation to the last five years. Tables VI to X show the statistic of outages in the discussed network between years 2016 and 2020. The results presented in Tables VI to VIII are given for the years 2016 to 2018, before the permanent closed-loop was implemented. The results presented in Tables IX and X are provided for 2019 and 2020 after the implementation of the closed-loop operation. Based on the results presented, it is evident that the implementation of permanent closed-loop operation cannot reduce the number of events that lead to the outages. However, it can substantially reduce the duration of outages. In the given case, the permanent closedloop operation decreased the average yearly duration of outages per customer from 329 min/customer to 111 min/customer. The presented data include the outages caused by faults as well as the outages caused due to maintenance. Although the users are without a power supply, the last ones are usually not included in SAIDI.

Table VI. Outages in 2016 (Out = Outage; All = All Customers; Aff = Affected Customers, Dur = Duration)

	All – Affected Customers, Dur –Duration)							
Out	Aff	Dur	Aff/All	Dur*	All			
		[min]		(Aff/All)				
1	477	92.00	0.581	53.452	821			
2	184	1.02	0.224	0.228	821			
3	184	5.00	0.224	1.121	821			
4	477	248.00	0.581	144.088	821			
5	344	37.00	0.419	15.503	821			
6	821	0.92	1.000	0.917	821			
7	821	0.05	1.000	0.050	821			
8	821	1.00	1.000	1.000	821			
9	177	143.00	0.216	30.829	821			
10	76	0.38	0.036	0.014	2137			
11	76	0.22	0.036	0.008	2137			
12	76	1.57	0.036	0.056	2137			
13	2137	1.22	1.000	1.217	2137			
14	1976	5.90	0.925	5.455	2137			
15	1320	13.42	0.618	8.287	2137			
16	45	243.68	0.021	5.131	2137			
17	2137	31.28	1.000	31.283	2137			
18	2137	39.00	1.000	39.000	2137			
19	76	133.95	0.036	4.764	2137			
20	23	299.00	0.011	3.218	2137			
21	2137	0.60	1.000	0.600	2137			
22	2137	0.78	1.000	0.783	2137			
23	1968	0.28	0.921	0.261	2137			
To	tal [min/(c	ustomer ye	ar)]	347.265				

Table VII. Outages in 2017 (Out = Outage; All = All

Customers; Aff = Affected Customers, Dur =Duration)						
Out	Aff	Dur	Aff/All	Dur*	All	
		[min]		(Aff/All)		
1	183	2.95	0.223	0.657	822	
2	183	1.50	0.223	0.334	822	
3	822	1.27	1.000	1.267	822	
4	822	1.25	1.000	1.250	822	
5	79	11.20	0.037	0.413	2140	
6	78	0.95	0.036	0.035	2140	
7	78	1.87	0.036	0.068	2140	
8	361	93.77	0.169	15.818	2140	
9	2140	0.45	1.000	0.450	2140	
10	2140	0.33	1.000	0.333	2140	
11	427	2.08	0.200	0.416	2140	
12	118	0.55	0.055	0.030	2140	
13	1257	10.00	0.587	5.874	2140	
14	24	56.78	0.011	0.637	2140	
15	118	66.53	0.055	3.669	2140	
16	88	235.72	0.041	9.693	2140	
17	78	86.80	0.036	3.164	2140	
18	78	14.27	0.036	0.520	2140	
19	2140	5.05	1.000	5.050	2140	
20	50	124.88	0.023	2.918	2140	
21	24	95.25	0.011	1.068	2140	
22	2140	3.65	1.000	3.650	2140	
23	2140	1.20	1.000	1.200	2140	
Total [min/(customer year)] 58.513						

4. Conclusion

The proposed paper deals with the permanent closed-loop operation as a measure for improving power supply reliability in rural medium voltage distribution networks. The proposed solution was implemented in the distribution network of Elektro Celje d.d., where permanent closedloop operation started in January 2019. The power supply reliability has been improved by introducing additional switching devices with properly parameterized relays, which disconnect only the faulty section of the loop. In this way, a substantial improvement in power supply reliability has been improved substantially. The cost of its implementation was approximately 20 % of the cabling costs. Two years of operation clearly show that the applied solution did not reduce the number of outages, but it reduced their duration to 33% of the initial value (111 min vs 329 min per customer per year).

Table VIII. Outages in 2018 (Out = Outage; All = All Customers; Aff = Affected Customers, Dur =Duration)

Out	Aff	Dur	Aff/All	Dur*	All
		[min]		(Aff/All)	
1	484	190,35	0,587	111,672	825
2	341	14,48	0,413	5,986	825
3	484	84,37	0,587	49,495	825
4	825	8,58	1,000	8,583	825
5	825	190,62	1,000	190,617	825
6	183	764,28	0,222	169,532	825
7	2145	9,90	1,000	9,900	2145
8	2145	0,25	1,000	0,250	2145
9	1425	0,02	0,664	0,011	2145
10	2145	20,88	1,000	20,883	2145
11	149	31,37	0,069	2,179	2145
12	24	100,55	0,011	1,125	2145
13	24	1023,52	0,011	11,452	2145
14	78	1,63	0,036	0,059	2145
To	tal [min/(c	ustomer ye	ar)]	518.745	

Table IX. Outages in 2019 (Out = Outage; All = All Customers; Aff = Affected Customers, Dur = Duration)

	All – Allected Customers, Dui –Duration)							
Out	Att	Dur	Att/All	Dur*	All			
		[min]		(Aff/All)				
1	43	12.48	0.050	0.630	852			
2	852	2.37	1.000	2.370	852			
3	293	0.00	0.344	0.000	852			
4	27	578.35	0.032	18.328	852			
5	267	59.10	0.313	18.521	852			
6	852	5.67	1.000	5.667	852			
7	1282	2.28	1.505	3.436	852			
8	792	0.32	0.930	0.294	852			
9	451	24.77	0.529	13.110	852			
10	46	49.35	0.054	2.664	852			
11	293	2.07	0.344	0.711	852			
12	50	23.28	0.023	0.543	2145			
13	24	187.47	0.011	2.098	2145			
14	50	60.62	0.023	1.413	2145			
15	26	71.08	0.012	0.862	2145			
16	138	60.58	0.064	3.898	2145			
17	26	163.07	0.012	1.977	2145			
18	91	129.72	0.042	5.503	2145			
19	26	256.45	0.012	3.108	2145			
20	1984	0.80	0.925	0.740	2145			
21	2123	5.95	0.990	5.889	2145			
22	163	35.63	0.076	2.708	2145			
23	2123	13.37	0.990	13.230	2145			
24	79	259.27	0.037	9.549	2145			
25	44	404.42	0.021	8.296	2145			
26	79	1.57	0.037	0.058	2145			
27	88	4.90	0.041	0.201	2145			
28	1959	5.60	0.913	5.114	2145			
Tot	al [min/(c	ustomer ve	ar)]	130.915				

Table X. Outages in 2020 (Out = Outage; All = All Customers; Aff = Affected Customers, Dur =Duration)

	All – Affected Customers, Dur –Duration)							
Out	Aff	Dur	Aff/All	Dur*	All			
		[min]		(Aff/All)				
1	24	1.00	0.029	0.029	840			
2	467	0.93	0.556	0.519	840			
3	409	1.73	0.487	0.844	840			
4	120	2.53	0.143	0.362	840			
5	119	2.80	0.142	0.397	840			
6	840	5.60	1.000	5.600	840			
7	540	13.88	0.643	8.925	840			
8	60	302.88	0.071	21.635	840			
9	24	57.05	0.029	1.630	840			
10	80	26.80	0.037	1.000	2145			
11	44	118.67	0.021	2.434	2145			
12	80	943.37	0.037	35.184	2145			
13	44	136.35	0.021	2.797	2145			
14	44	38.15	0.021	0.783	2145			
15	44	15.40	0.021	0.316	2145			
16	26	1.00	0.012	0.012	2145			
17	2096	2.50	0.977	2.443	2145			
18	110	12.98	0.051	0.666	2145			
19	26	0.52	0.012	0.006	2145			
20	140	44.02	0.065	2.873	2145			
21	166	29.33	0.077	2.270	2145			
22	26	110.67	0.012	1.341	2145			
Tot	al [min/(c	ustomer ye	ar)]	92.064				

Acknowledgement

The authors thank ELES d.o.o. for financing the subproject Closed-loop operation in the scope of NEDO demonstration project, grant no. POG2017/0502, and Slovenian Research Agency (ARRS) for supporting our research, grants no. P2-0115 and J2-1742.

References

[1] W. T. Huang, T. H. Chen, G. C. Pu, Y. F. Hsu, T. Y. Guo, Assessment of Upgrading Existing Primary Feeders from Radial to Normally Closed Loop Arrangement, IEEE Transmission and Distribution Conference and Exhibition, 3, 2002.

[2] Y. Guo, Feasibility Study of Upgrading Primary Feeders from Radial and Open-Loop to Normally Closed-Loop Arrangement, IEEE Transactions on Power Systems (2004), vol. 19, no. 3, pp. 1308–1316.

[3] W. T. Huang, S. T. Chen, Line Loss Reduction by Distribution System Upgrading from Radial to Normally Closed-Loop Arrangement, Ninth International Conference on Hybrid Intelligent Systems, Washington, USA, vol. 3, pp. 334 – 339, 2009.

[4] K. Deželak, M. Rošer, R. Škof, T. Kastelic, and G. Štumberger, The impact of feeders in closed-loop arrangement on harmonic distortion and power losses, International Conference on Renewable Energies and Power Quality (ICREPQ'13), Bilbao (Spain), March 2013.

[5] N. Okada, H. Kobayashi, K. Takigawa, M. Ichikawa, K. Kurokawa, Loop power flow control and voltage characteristics of distribution system for distributed generation including PV system, 3rd World Conference on Photovoltoic Energy Conversion, May 11-18, Osaka. Japan, pp. 2284-2287, 2003.

[6] G. Štumberger, K. Deželak, M. Rošer, R. Škof, and T. Kastelic, Medium-voltage distribution feeders in open-loop and closed-loop arrangement, International Conference on Renewable Energies and Power Quality (ICREPQ'12), Santiago de Compostela (Spain), March 2012,

[7] M. Ojaghi and R. Ghahremani, Piece-wise linear characteristic for coordinating numerical overcurrent relays, IEEE Trans. Power Del. (2017), vol. 32, no. 1, pp. 145-151.

[8] Measuring Relays and Protection Equipment- Part 151: Functional Requirements of Over/Under Current Protection, Standard IEC 60255-151, 2009.

[9] Inverse-Time Characteristics Equations for Overcurrent Relays, IEEE, Standard C37.112-2018, 2018.

[10] K. V. Price, R. M. Storn in J. A. Lampinen, Differencial Evolution, Springer, 2005.[11] B. Polajžer, M. Pintarič, M. Rošer, and G. Štumberger,

[11] B. Polajžer, M. Pintarič, M. Rošer, and G. Štumberger, Protection of MV Closed-Loop Distribution Networks with Bi-Directional Overcurrent Relays and GOOSE Communications, IEEE Access (2019), vol. 7, pp. 165884 – 165896.