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Abstract. This paper addresses state estimation as one of the 

most essential mechanisms in real-time operation and control of 

modern power systems, and proposes a novel solution to the 

issue of poor network observability, commonly faced in 

distribution system state estimation (DSSE) characterized by an 

ever-increasing penetration of renewable generation. The 

ongoing transformation from conventional passive, one-

directional power systems to active smart grids necessitates more 

accurate and reliable system state estimation to achieve optimal 

system performance. Real-time grid monitoring and control has 

been a routine task in transmission networks, but distribution 

grids cannot successfully utilize these capabilities due to 

different topologies, specific electrical characteristics, the low 

amount of available real-time measurements, as well as 

substantial communication effort needed to handle the data. 

Furthermore, with the advent of distributed generation, new 

types of loads and the vast surge of prosumers, a substantial 

amount of data is required to maintain system stability and 

controllability. For these reasons, reliable state estimation 

requires a high-quality creation process of pseudo-measurement, 

in addition to an efficient algorithm and an extremely accurate 

estimator. Thus, this paper proposes a novel framework of 

dynamic estimation methodology that includes the use of 

Artificial Neural Networks (ANN) in the pseudo-measurements 

generation process, utilizes Iteratively Reweighted Least Squares 

(IRWLS) algorithm and Schweppe-Huber Generalized 

Maximum Likelihood (SHGM) estimator. The efficiency and 

accuracy of the proposed methodology were assessed and 

verified on a benchmark network model. 
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1. Introduction 

 
Contemporary power systems are facing a vast number of 

challenges in their pursuit for satisfying the requirements 

of security, equity, and sustainability. One of the major 

tasks in daily power system operation is maintaining the 

normal state, which heavily relies on the ability of 

supervisory control and data acquisition (SCADA) 

systems to continuously monitor the system through the 

acquisition of various measurements, their processing and 

determining the system state [1]. This process of inferring 

the values of system state variables using a limited 

number of measured data at certain locations is referred to 

as state estimation (SE) [2]. 

State estimation is well-established at the transmission 

system level, where it has been in use for the last few 

decades and is a most vital component of energy 

management systems [3]. However, distribution system 

state estimation still faces many challenges due to several 

issues [4], such as complex network topology, low X/R 

ratio, measurement scarcity, renewable energy 

penetration, unbalanced operation, communication issues 

etc. The aforementioned problems lead to distribution 

grids being essentially unobservable. 

This paper suggests an approach to offset the poor 

observability and achieve accurate state estimation by 

using ANN in the pseudo measurement generation 

process, as well as utilizing an alternative SE algorithm 

and a nonconventional estimator for better robustness. The 

subsequent sections include a brief overview of crucial 

state estimation steps in Section II, and a description of 

the proposed methodology in Section III. Simulation 

results and discussion are presented in Section IV, 

whereas main conclusions are given in Section V. 

 

2. State Estimation 
 

SE is fundamentally a process which consists of several 

critical steps or modules that perform specific functions, 

such as topology identification, observability assessment, 

bad data detection, pseudo-measurement generation, and 

state estimation solver. The interactions between different 

modules are illustrated in Fig. 1. 

Topology identification gathers data about states of circuit 

breakers and switches in the system, assuming that the 

network topology is known to the system operator, except 

in the case of a fault or contingency. It aims to utilize the 

metered data throughout the network and update the 

switching states to avoid topology errors. Recent methods 

used in literature are based on maximum likelihood 

estimation [5], Probabilistic recursive Bayesian approach 

[6], and Nonlinear Least Absolute Value [7]. 
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Fig. 1.  State estimation flow chart. 

 

Bad data detection searches for errors in the measurement 

dataset and eliminates faulty measurements only if there is 

enough measurement redundancy and a single source of 

the erroneous measurement [1]. Conventional bad data 

detection relies on the assumption that faulty data follows 

a particular probability density function, such as Chi-

squared, and performs statistical hypothesis testing [8]. 

Novel approaches have utilized linear WLS frameworks 

with equality constraints [9], largest normalized residual 

test of PMU data [10], and advanced statistical analyses 

based on penalized semidefinite programming conic 

relaxation [11].  

Bad data detection is followed by observability analysis, 

which determines if an SE solution exists, i.e., if the state 

variables can be inferred from the available 

measurements, and identifies portions of the network 

which are unobservable due to bad or missing data, by 

several different topological (graph theory-based, 

searching the full spanning tree of the network, such as 

[12]), numerical (decoupled DC model [13], based on the 

gain, Jacobian, or the gram matrix) and hybrid methods 

[14]. 

In case measurement redundancy is insufficient and the 

system is unobservable, the input set is artificially 

expanded by introducing pseudo measurements, which are 

usually generated according to the network’s historical 

data by various probabilistic methods. Most recently, the 

surveyed methodologies involved a game-theoretic 

expansion of relevance vector machines to estimate the 

nodal power consumption with advanced metering 

infrastructure (AMI) [15], a gradient boosting tree method 

trained by user-level data [16], and a kernel density 

estimation (KDE) technique to develop the conditional 

probability density function of PV outputs [17]. 

The SE solver (estimator) aims to find an optimal solution 

for the system states according to the network model 

constraints and given measurements. Conventionally, the 

solver consists of a linear optimization problem such as 

Weighted Least Square (WLS) and contains an algorithm 

that minimizes an objective function in an iterative way, 

such as Gauss-Newton [18], quasi-Newton techniques 

[19], or a linear algorithm such as CLSE-PN [20]. 

 

3. Proposed Methodology 

 
The proposed methodology seeks to exploit deficiencies 

of conventionally used SE aspects, with the particular 

focus on enhancing pseudo-measurement generation and 

state estimator capabilities by utilizing artificial neural 

networks concepts, replacing the WLS algorithm with the 

notion of iteratively altering weights, as well as using a 

Schweppe-Huber Generalized Maximum Likelihood 

(SHGM) solver. 

 

A. ANN for Pseudo Measurement Generation 

 

Artificial neural networks are computational networks 

which attempt to simulate the decision process in 

networks of nerve cells (neurons) of the biological central 

nervous system [21]. They play an important role in 

several aspects of decision theory, information retrieval, 

prediction, detection, diagnosis, pattern recognition, 

control, classification, and data processing. A neuron is 

the basic building block of an ANN, and it can be 

structured as a perceptron, artron, or adaline. The 

commonly used perceptron is defined by the following 

input/output relation: 

    (1) 

   (2) 

where z is the node (summation) output of linearly 

combined weighted (wi) inputs, xi, used as an argument of 

activation function, fA, which is typically linear, unipolar, 

binary or sigmoid. Perceptrons are combined into various 

topologies, such as back-propagation, Hopfield, counter-

propagation, LAMSTAR etc. The ANN parameter 

estimation is done by a learning (training) process called 

the optimization algorithm, formulated in terms of the 

minimization of a loss function that consists of an error 

and regularization terms. Most common algorithms are 

gradient descent, Newton's Hessian matrix-based method, 

conjugate gradient, and Levenberg-Marquardt. Recently, 

the attractive properties of ANN have sparked a lot of 

research interest, and ANN-based methods for pseudo 

measurement generation in DSSE were introduced as 

different topologies and applications by [22], [23] and 

[24]. 

This paper suggests a feed-forward ANN topology with 

three hidden layers, demonstrated in Fig. 2, which takes 

historical load active and reactive power data, together 

with static generators’ profiles as inputs and 200 neurons 

in each layer to train the network to successfully predict 

bus voltages as the output. The obtained data is then used 

as pseudo measurements to account for missing 

measurement data in the dynamic state estimation process.  

The data set consists of one-year load and static generator 

data in 15-minute resolution, adding up to 35136 time 

steps, out of which 25% (8784) were used in the training 

set, and the rest was used in the validation set. The logistic 

sigmoid function was set as the output activation function, 

while stochastic gradient-based optimizer “Adam” [25] 

was used as a solver. 
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Fig. 1. Proposed ANN structure. 

 

B. Iteratively Reweighted Weighted Least Squares 

 

IRWLS algorithm assumes that a robust signal recovery 

can be achieved by global minimization of the sparse 

vector of sensing data by solving a least-square problem in 

each iteration. However, it is capable of adjusting several 

constraints from active to inactive in one iteration by using 

only certain samples, thus using only a portion of the 

kernel matrix, which significantly decreases the run-time 

complexity [26].  

This algorithm was chosen due to its proven signal 

recovery from incomplete and inaccurate linear 

measurements, high robustness against noise and fast 

convergence. However, its application on SE problems has 

been very limited. As a modification of the conventional 

WLS, it is assumed that it can improve the SE’s robustness 

against bad data by performing a quick constrained log-

likelihood maximization. 

 

C. SHGM Estimator 

 

In poorly observable networks subject to topology errors 

and frequent load changes, the conventional estimator may 

yield highly biased state estimates or suffer from 

divergence problems [27]. To overcome these issues, this 

paper suggests an SHGM Likelihood estimator, whose 

statistical and numerical robustness has been proven. 

Mathematically, the relationship between measurement 

vector , the state vector, ,  containing bus voltage 

magnitudes, and the error vector  can be expressed as: 

    (3) 

The state estimator aims to minimize the objective 

function: 

   (4) 

where  is the weight which decreases the impact of bad 

data,  is the cost function, and  is the normalized 

residual. The SHGM estimator calculates the weights as: 

    (5) 

where  is a parameter with  distribution calculated 

by projection statistics. The cost function of SHGM is 

defined as: 

 (6) 

where λ is the breakpoint that balances the trade-off 

between the least squares and the least absolute criterion. 

Using IRWLS, after differentiating , rearranging 

terms, first-order Taylor series expansion of , the 

general solution given in terms of Jacobian matrix, , 

covariance matrix, , and matrix ,  for 

 iterations is given as: 

  (7) 

 

D. Grid Description 

 

The analyzed grid is an urban HV/MV network with 

rated voltage levels of 220, 110 and 10 kV, which 

contains PV, wind, and hydro generators, 15 distribution 

feeders with the total length of 37.82 km, and 751.6 km 

of HV lines. The basic grid data is summarized in Table 

I, and the topology is given in Fig. 3. The default 

measurement number in the network is 190, which makes 

it inherently unobservable for SE calculations, as 461 

measurements are required for full observability; hence, 

the rest must be produced by the pseudo measurement 

generating algorithm. 

 
Table I. – Test Grid Data 

 

TYPE NO OF ELEMENTS 

Transformer 5 

Static generator 232 (212 PV, 1 hydro, 19 wind) 

Bus 514 

Switch 802 

Load 218 

 

 
Fig. 2. Network topology. 
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E. Software Environment 

 

The research used a Python environment to create and 

simulate all SE modules. The network model and SE were 

created in pandapower library [28], which is a stand-alone 

power system analysis toolbox with extensive power system 

model library and several power systems analyses. The ANN 

were modelled using scikit-learn machine learning library’s 

[29] Multi-layer Perceptron regressor. The network data were 

taken from the SimBench dataset [30], publicly available 

comprehensive dataset which contains electrical parameters 

for modelling and benchmarking of electric grids, together 

with time series data for the analysis. 

 

4. Results 
 

In the ANN-based pseudo measurement generation process, 

load profiles were firstly obtained from the SimBench 

database, and the input sets for load active and reactive power 

and static generation were created, which can be observed in 

Fig. 4.  

 

 

Fig. 3. ANN input time series data. 

After the output set Y was obtained for bus voltages (vm_pu) 

from timeseries calculations, a train/test dataset split was 

performed, as previously explained, in the 1:3 ratio. The data 

were scaled and saved. After 37 iterations, the training was 

successful, as the training loss did not improve more than 10-4 

for 10 consecutive epochs. The achieved mean squared error, 

whose exponential convergence is depicted in Fig. 5, was 0% 

after 300 ms, which indicates remarkable accuracy and 

computational efficiency. As a result, a 24-hour voltage 

profile is given in Fig. 6, for Bus 53 with particularly 

significant overvoltage. 

In the state estimation process, all initial measurements were 

removed from the SimBench dataset to avoid having double 

measurements at the same grid locations. Afterwards, load 

reactive power (and a small portion of active power data to 

assure the 2n-k criterion) from the time series calculation were 

added as measurements, and the ANN-obtained voltage values 

were used as pseudo measurements to achieve full 

observability in the SHGM solver. To analyze the algorithm 

accuracy, another state estimation was performed with the 

voltage data from the test set (the “real” load flow-based 

values) as pseudo measurements. The root means square SE 

error of all time steps between the real and estimated active 

power injections at indicated buses were given in Fig. 7. It is 

worth noting that the bus P estimates bear the biggest errors, 

and thus their RMSE was presented. However, other states 

such as voltage angle carried a negligible RMSE of 0.02 %. 

To compare the IRWLS with the conventional WLS with 

respect to accuracy, another WLS-based SE was performed on 

the same measurement and pseudo-measurement datasets. 

However, since overall differences were very subtle, the error 

metrics graph is not included in the report. However, in terms 

of robustness against sudden data fluctuations, it could be seen 

that whenever measurements had such a behavior, the 

consecutive state estimation errors on several buses differed in 

the two methods. While the proposed method generally 

yielded smaller errors, the WLS errors displayed values north 

of 17% on rare occasions. However, the convergence of both 

methods was constant throughout the whole time, which could 

be attributed to the high accuracy of ANN-generated pseudo-

measurements.  

 

 

Fig. 4. ANN training error convergence. 

 

Fig. 5. ANN output for Bus 53. 
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Thus, the proposed solver and the algorithm arrangement are 

comparably accurate to the widely established WLS and 

display significant robustness in all circumstances. 

A drawback of this method is increased computational time  

by 11.4% on this particular grid. Nevertheless, the estimations 

were not necessarily performed under the same conditions, as 

other simultaneously running software might have contributed 

to the processing time.  

 

Fig. 6.    State estimation error at selected buses.

5. Conclusion 
 

This paper tackled the issue of state estimation in poorly 

observable networks with high renewable penetration, 

which arises due to low measurement redundancy and 

plenty of faulty metering data. The basic goal was to 

develop a framework of methodologies that improve the 

shortcomings of conventional SE process by proposing 

three vital modifications to the traditional algorithm. 

The first and most significant suggestion was the use of 

artificial neural networks in the pseudo-measurement 

generation process. The paper proposed a feed-forward 

topology with three hidden layers, which successfully 

created missing pseudo-measurements with remarkable 

computational speed and accuracy. 

The second proposal aimed to boost the properties of SE 

algorithm by introducing the Iteratively Reweighted Least 

Squares algorithm, thereby offering a higher robustness 

against noisy data and a faster convergence. The benefits 

of this method were attested by the fact that full 

convergence was achieved for all time instances of state 

estimation, as well as displaying substantial computational 

robustness during consecutive high measurement 

differentials. 

The third major method relied on the utilization of the 

Schweppe-Huber Generalized Maximum Likelihood 

estimator. Moreover, the proposed SE solver, whose 

solution existence was mathematically proven, exhibited a 

level of accuracy comparable to the one of conventional 

WLS, without yielding a statistically significant number of 

highly biased state estimates.  

The simulations of the initially unobservable HV/MV grid 

confirmed the initial hypothesis about accuracy, 

convergence, robustness, and computational efficiency 

enhancements achieved by the proposed framework. 
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