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Abstract. This paper falls within the scope of studies
concerning the optimization of the functioning of systems
with renewable energy (hydro energy). We have developed
a theory that is extraordinarily simpler than previous ones
which resolves the problem of minimization of a functional
of the type

P() = /0 Lt =(8), ' (8))dt

within the set KC* (piecewise C') functions that satisfy:
2(0) =0, z(T) = b and the constraints

Z'(t) > 0 and H(t,2(t), 2 (t)) < Pa(t), Vt € [0,T]

In particular, we have established a necessary condition for
the stationary functions of the functional. The method al-
lows for elaboration of the optimization algorithm which
provides us with the optimal regime of functioning of the
entire hydrothermal system. Finally, we present a exam-
ple, employing the algorithm realized with the "Mathe-
matica" package to this end.
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1. Introduction

A hydrothermal system is made up of hydraulic and
thermal power plants which, during a definite time in-
terval, must jointly satisfy a certain demand in electric
power. Thermal plants generate power at the expense
of fuel consumption (which is the object of minimiza-
tion), while hydraulic plants obtain power from the
energy liberated by water that moves a turbine; there
is a limited quantity of water available during the op-
timization period.

In prior studies [1-2], it has been proven that the prob-
lem of optimization of the fuel costs of a hydrothermal
system with n thermal power plants may be reduced
to the study of a hydrothermal system made up of one
single thermal power plant, called the thermal equiva-
lent. In the present paper, we consider a hydrothermal
system with one hydraulic power plant and n thermal
power plants that have been substituted by their ther-
mal equivalent. With these conditions, we present the
problem from the Electrical Engineering, perspective
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to then go on to resolve the mathematical problem
thus formulated.

A. Hydrothermal Statement of the Problem

The problem consists in minimizing the cost of fuel
needed to satisfy a certain power demand during the
optimization interval [0,T]. Said cost may be repre-
sented by the functional

F(P) = /O " w(p(e)dt

where W is the function of thermal cost of the thermal
equivalent and P(t) is the power generated by said
plant. Moreover, the following equilibrium equation
of active power will have to be fulfilled

P(t) + H(t, 2(t), 2'(t)) = Pa(t), Vt € [0, T]

where P;(t) is the power demand and H (¢, z(t), 2/ (¢))
is the power contributed to the system at the instant
t by the hydraulic plant, being: z(t) the volume that
is discharged up to the instant ¢ (in what follows, sim-
ply volume) by the plant, and 2/(t) the rate of water
discharge at the instant ¢ of the plant.

Taking into account the equilibrium equation, the
problem reduces to calculating the minimum of the
functional

F(z):/o U (Py(t) — H (, 2(1), #'(2))) dt

If we assume that b is the volume of water that must
be discharged during the entire optimization interval,
the following boundary conditions will have to be ful-
filled

z(0) =0, 2(T)=b

The classic studies dealing with hydrothermal opti-
mization employ concrete models both for the func-
tion of thermal cost ¥, as well as for the function
of effective hydraulic generation H, so if the model
changes, the results obtained are not valid.

The study of optimal conditions for the functioning
of a hydrothermal system constitutes a complicated
problem which has attracted significant interest in re-
cent decades. Various techniques have been applied
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to solve the problem, such as functional analysis tech-
niques [3], dynamic programming [4], Ritz’s method
[5], network techniques [6] and others [7-8].

Such a variety of the mathematical models forces us
to undertake a general study of the problem. The re-
sults of this study should be extensible to a large set
of the hydrothermal problems. It is worth observing
that most of the studies on the subject are somewhat
indefinite in determining the limits of applicability of
their results and hence, a thorough theoretical study
is needed, one that goes beyond a mere analysis of
separate problems.

One of the main contributions of this paper is that
the method is valid for any model of power plants,
since we will try to consider the functions Py, ¥ and
H as general as possible without any restrictions, ex-
cept those that are natural for problems of this type.
For the sake of convenience, we assume throughout
the paper that they are sufficiently smooth and are
subject to the following additional assumptions:

Function of thermal cost. Let us assume that the cost
function ¥ : Rt — R* satisfies ¥/(z) > 0, Vo € Rt
and, thus, is strictly increasing. This restriction is
absolutely natural: it reads more cost to more gener-
ated power. Let us assume as well that ¥ (z) > 0,
Vx € RT and is therefore strictly convex. The models
traditionally employed meet this restriction.

Function of effective hydraulic generation. Let us
assume that the hydraulic generation H(t,z,2’)
[0,T] x RT x RT — R is strictly increasing with re-
spect to the rate of water discharge z’, with H,» > 0.
Let us also assume that H(t, z, 2') is concave with re-
spect to 2’, that is H,/,,» < 0. The real models meet
these two restrictions, and the former means more
power to a higher rate of water discharge. We also
suppose that H(t, z,0) = 0.

We see that we only admit non-negative thermal
power (P(t)) and we will solely admit non-negative
volumes (z(t)) and rates of water discharge (2/(¢)),
therefore we may present the mathematical problem
in the following terms.

B. Variational Statement of the Problem

We will call II; the problem of minimization of the
functional

T
F) = /0 L(t, 2(t), 2/ (1))t
with L of the form
L(t, 2(t), 2'(t)) = W(Py(t) — H(t, 2(t), 2'(t)))

over the set

0y = {z € KC'[0,T] / 2(0) = 0,2(T) = b,
2'(t) > 0N H(t,2(t),2'(t) < Py(t)}
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So the problem involves inequality non-holonomic
constraints in the derivative 2'(t).

Variational problems in which the derivatives of
the admissible functions must be subject to cer-
tain inequality constraints (differential inclusion 2’ €
E(t,2)) have traditionally been dealt with by recur-
ring to many diverses techniques. The first studies
in this field were conducted by Flodin [9] for sim-
pler constraints of the type A < 2/(t) < B and by
Follinger, who in [10] deals in a very complex way
with a more general constraint of the type H (¢, z(t)) <
Z'(t) < G(t, 2(t)). In [11] Clarke deals with necessary
conditions for problems in the calculus of variations
that incorporate inequality constraints of the form
f(z,2") <0. In [12], the author determines necessary
conditions, in terms of generalized gradients, for the
existence of an extremal arc for calculus of variations
and optimal control problems with differential multi-
inclusion 2’ € E(t, 2).

In [13] Clarke and Loewen consider an optimal con-
trol problem on a fixed time interval [0, 7], and a vari-
ety of necessary conditions are derived for the original
optimal control problem. The same authors, in [14],
develop an existence theory for solutions to the orig-
inal problem with |2'(¢)| < R. In [15-16] Loewen and
Rockafellar consider the classical Bolza problem in the
calculus of variations, incorporating endpoint and ve-
locity constraints through infinite penalties. The in-
tegrand L are allowed to be nondifferentiable. In [17]
the authors have recurred to techniques of optimal
control and they formulate a sufficient optimality con-
dition for broken extremals in terms of the solution of
the Hamilton-Jacobi-Bellman equation.

In [18-19-20] the simplest problem of the calculus of
variations is investigated, along with the correspond-
ing Euler equation. Some new results on the Euler
equation are obtained. Finally, Noble and Schéttler
[21] develop sufficient conditions for a relative mini-
mum for broken extremals in an optimal control prob-
lem based on the method of characteristics.

In this paper, we have developed a much simpler
theory than previous ones which solves the problem
IT,. The development is hence self-contained and ex-
tremely basic, and also enables the construction of the
optimal solution.

2. Boundary Solutions

We will say that a function ¢ is admissible for II; if
q € ©,. We will say that ¢ is a solution of problem
I, if ¢ is admissible and

F(q) < F(z), Vz € 6

We also say that a function ¢ € ©, presents an inferior
boundary arc in [tq, o] if

Vt € [t1,ta], ¢'(t) =0
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and that a function ¢ € ©,, presents a superior bound-
ary arc in [t1,to] if

VE € [t1,ta], H(t,q(t),q'(t) = Pa(t)

The function ¢ € O}, presents an interior (or extremal)
arc in an interval [tq, to] if

Vt € (t1,t2), H(t,q(t),q'(t) < Pa(t) A0 < d'(t)

If we did not have the restrictions 2/'(t) > 0 and
H (t,2(t),2'(t)) < Py(t), we could use the shooting
method to resolve the problem. In this case, we would
use the integral form of the Euler’s equation (Du Bois-
Reymond equation)

— L./(t,2(t),2'(t) + /0 L.(s,2(s),7'(s))ds =
=—L,(0,2(0),2/(0)) = K >0, Vt € [0,7] (1)

Varying the initial condition of the derivative 2z’(0)
(initial flow rate), we would search for the extremal
that fulfils the second boundary condition z(T) = b
(final volume). However, we cannot use this method in
our case, as due to the restrictions, the extremals may
not admit bilateral variations, i.e. they may present
boundary arcs. The following questions arise: Do all
the interior arcs (C7 and C3 in Fig. 1) have the same
constant K7. At what moments does the boundary
have to be penetrated and abandoned?. In the fol-
lowing sections, we shall develop the theory needed to
respond to these questions.

Fig. 1. Boundary and interior arcs

3. The Main Coordination Theorem

Firstly, we are going to introduce the concept of weak
influence of the volume, essential when studying su-
perior boundary arcs.

Definition 1. We say that in a problem II;, the in-
fluence of the volume is weak if for all admissible
q, Yh € KC[0,T)] and Vty,t, € [0,T] satisfying

1) H(t,q(t),q'(t)) = Pa(t) in [ty,to]
i) h(0) = ( ) =0
iii) A/(t) <0, Vt € (t1,t2)

Je’ > 0 such that Ve € [0,¢’] and Vt € [t1, t2]

H(t,q(t) +eh(t),q'(t) +eh’(t)) < Pa(t)
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This definition in fact serves to impose the restriction
that g + eh is admissible Ve € [0,£'] and for any h
which satisfies ii) and iii). This yields the existence of

0F(g;h) :== lim Flg +xh) - Flq)

z—0t x

The definition is designed to reflect the fact that if
the hydraulic power station generates all the power
demand in an interval, any other distribution of wa-
ter that produces a lower rate of water discharge in
the same interval is unable to produce more power at
any instant of the interval, or what is equivalent, the
flow rate has a much greater influence on the genera-
tion of hydraulic power than the volume, a point that
all the hydraulic power plant models in use fulfill.

Let us next see the results that give rise to what
we have denominated the main coordination theorem,
which will enable us to find the optimum solution.

Definition 2. Let us term the coordination function
of ¢ € O the function in [0,T7], defined as follows

¥, () = /jL(t 40,4 (O)dt — L (2, q(x). ¢/ (z))

We observe that for every tg,t; € [0,7] we have

¥, (t) — ¥, (to) = / Lo(s.q(5), () ds+

+ L. (to, q(to), 4’ (to)) — L (t1,q(t1), ¢ (t1))

Theorem 1. Let € > 0 and ¢ € C' be a solution of
problem II; such that

q,(t) =0, Vit € [to,tl]

1) IF0 < H(t,q(t),q'(t)) < Py(t), Vt € [t1,t1 + €], then
¥q(t1) = ¥4(to)

i) If0 < H(t,q(t), ¢ (t)) < Pu(t), Vt € [to—¢, o], then
¥,(t1) < ¥4(to)

Proof)

i) Let us assume the contrary, that is
¥q(tl) < ¥q(t0>

or, which is the same

/ " <Lz<t, 0).4/8) ~ S L (t.a(t). q'<t>>) dt < 0

Let us consider the following sequence of functions

0 if t <t
_ ) nlt—ty) if te [to,t0+ 2
fu(t) = 1 it tefto+ L, b
g(t) if t> tl
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with ¢ € C! such that g(t;) = 1 and g(t) = 0
Vit € [t1 +¢T).

It is clear that f, point-wise convergent and uniformly
bounded in [0, 7], and integrable in the sense of Rie-
mann Vn. Moreover

0 if t<tp

lim fo(t) = f(t)=q 1 if te (to,t]
e g(t) if  t>t

Letting

Ton(t) =T(t)fu(t)
we have that T,,(t) also is point-wise convergent and

uniformly bounded in [0, 7] and integrable in the sense
of Riemann Vn. Besides, there hold the relations

0 if  t<tg
e D(tg(t) if t>t

We are now in condition to establish that

t1 t1 t1
im [T, (t)dt = / lim T, (£)dt = / T(t)dt
n—oo fio tg 0 to
Thus

t1

lim T, (t)dt =

n—oo tO

— / 1 (Lz(aq(t),q’(t)) - %Lz' 0 q(t>,q/<t))> 0

which yields that for some m

t1 t1
| Tutde= [ O£ <0
to to

Let us take into account that 3z’ > 0 so small that,
Vz € [0,2'], q(t) + xfim(t) is admissible. At this mo-
ment it is not necessary to claim the weakness of the
influence of the volume. This is because the restriction
¢'(t) > 0 only effects on the rate of water discharge.
Let us consider

|
o~
=

[ (stad) ~ rotad)) - sutor

— [ @) fa@ydt + / D) fon ()t

+ / T gt + / U fde
t1 t1+e

Since T'(t) = 0 in [t1,¢1 + €], ¢ is an extremal in this
interval, and f,, = 0 in [t; + ¢,T] U [0, o], it follows
that

Flg+xfm) — F(q)

5F(q; fm) = Ili%lJr -
_ /tl T(E) fon (£)dt < 0
to
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which contradicts the assumption that ¢(¢) minimizes
the functional.

ii) We proceeding by analogy and consider the auxil-
iary sequence of functions

0 if t>1
) ont—t) i telt— it
fu(t) = -1 if ¢€[to,t1 — %]

with g € C! such that g(ty) = —1 and g(t) = 0 if
t<ty—e O

Theorem 2. Let ¢ > 0 and ¢ € C' be an solution of
problem II,, with the weak influence of the volume,
such that

H{(t,q(t),q'(t)) = Pa(t), Vt € [to, ]
i) If0 < H(t,q(t),q (t) < Py(t), Vt € [t1,t1 + €], then
¥,(t1) > ¥,(to)
i) If 0 < H(t, q(t),q'(t)) < Pa(t), ¥t € [to—e€, o], then
¥q(t1) < ¥4(to)

Proof)

The proof is technically identical to the one given in
the previous theorem. They only differ in the choice
of the auxiliary sequences of functions and in the way
of using the weakness of influence of the volume in
the calculation of the “directional derivative”; now
the admissibility of ¢(t) + x f,,(¢) is required.

i) One can use the following sequence of auxiliary func-
tions, satisfying the condition f] (¢t) <0, Vt € (to,1)

0 if t <t
ti—t\" .
fn(t) = -1 if te [to,tl]
t1 — to

with g € C! such that g(t;) = —1 and g(¢t) = 0 if
t Z tl + €.

ii) In this case one can use the sequence of auxiliary
functions, such that f}(t) < 0, Vt € (to,t1), defined
by

0 if t>1t
1
th—t\"
fn(t) = ( ! ) if te [to,tl]
t1 —to
q(t) if t <to

with g € C! such that g(tp) = 1 and g(¢t) = 0 if
t<tp—e
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Corollary 1. If ¢ € C* is a solution of problem IIy,
which contains in [tg, 1] a boundary arc of the type
¢ (t) = 0, and in both [tg —¢, to] and [t1, ¢1 + €] interior
arcs of the extremal, then the following is true

¥,(t1) = ¥4(to) (2)

¥,(t) = const., Vt € [to —€,to] U [t1,t1 +€¢  (3)
Proof)

(2) An immediate consequence of the above theorem.

(3) In the intervals [to — €,to] and [t1,t1 + €], q(t) sat-
isfies (1)

Ko = / La(s,q(s),¢(5))ds — Lo (£, q(t), ¢ (1))
in [to—E,to]
Ko — / " La(5,4(5),¢/())ds — Lo (to, q(to),  (t0)

K = / L(5,4(s),¢/(5))ds — L (, (), ¢/ (1))
0

in [ty + ¢
K = / La(s,q(s),¢/(5))ds — L (tr,q(t), ¢/ (1)
We have that
K1 — Ko =¥,(t1) — ¥,4(to) =0
and hence K; = K. -

Corollary 2. If ¢ € C' is a solution of problem IIy,
with the weak influence of the volume, containing the
boundary arc of the type

H(t’ Q(t>7q/(t)) = Pd(t), YVt € [t07t1]

and interior extremal arcs in both [ty — €,to] and
[t1,t1 + €], then the following holds: (2) and (3).

Proof)

The proof is similar to the previous corollary. O
These two corollaries give the satisfactory answer to
the above-formulated question: the constant K is the
same for two different arcs of extremal.

Theorem 3. (The main coordination theorem). If

g € C' is a solution of problem II,, with the weak
influence of the volume, then 3K such that

q'(t) >0
i) I and =¥ (t)=K
H(t,q(t),q'(t)) < Pa(t)
) If () =0 = ¥, (t) < K
iit) If H(t,q(t),q(t)) = Pa(t) ¥, (t) > K

Proof)

https://doi.org/10.24084/repqj01.352

i) This was already proven for the consequent interior
arcs in the previous corollaries.

ii) If ¢'(¢t) = 0, Vt € [to, t1], being (£1,t;+€) an interior
arc, by virtue of continuity of ¥, we have that

¥q(t) =K
Applying Theorem 1, we conclude that
¥, (t) — ¥,(t) > 0,V € [to, 1]
and, therefore,
K =¥,(t) > ¥,(t)
iii) By analogy with the previous argument. O

The constant K will be termed the coordination con-
stant of the solution q.

4. Construction of the Optimal Solution

We have already mentioned the fact that if we did not
have inequality restrictions, the solution could be con-
structed by means of the shooting method. We use the
same framework in the present case, but the variation
of the initial condition for the derivative, which now
need not make sense, is substituted by the variation
of the coordination constant K.

The problem will consist in finding for each K the
function qx which satisfies gx = 0 and the conditions
of the main coordination theorem, and from among
these functions, the one which generates an admissi-
ble function (qi (T') = b).

We will denote by M the rate of water discharge
at the instant ¢ = 0 that is necessary for the hy-
draulic power station to satisfy the power demand:
H(0,0, M) = P4(0) and we will denote by m the rate
of water discharge at the instant ¢ = 0 that is neces-
sary for H(0,0,m) = 0. We also set

Km = —Lz/(0,0,m); KM = —LZ/<O,O,M)

We observe that Va € (m, M) (with the hypothesis
L, (t,z,2") > 0) we have

Ky <=L, (0,0,2) < Ky,
To construct gx, we proceed by the following steps.
Step 1] (the first arc)

i) If K > K,,, we set qk(t)

= 0, in the maximal in-
terval [0,t1], where V¢ € [0, ¢4]

t
K > ¥(t) = / L-(5,0,0)ds — Li(t,0,0)
0

(The thermal power station generates all the power
demanded in [0, 1]).
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i) If K < Ky, we set g (t) = w(t), the solution of
the differential equation

H(t,w(t),w'(t)) = Py(t) with w(0) =0
in the maximal interval [0,¢;], where Vt € [0, 1]
K <¥,(t)=

- /O L (5, 0(s),/())ds — Lus (£, w(t), o (£))

(The hydraulic power station generates all the power
demanded in [0, #1]).

ili) Ky < K < K, (32 such that K = —L,,(0,0, z)).
gk will be the arc of the interior extremal (with
gk (0) = 0) which satisfies Euler’s equation in its
maximal domain [0, ¢1] and therefore the coordination
equation, Vt € [0,;)
K =%/t =
¢
— [ L), e (9)ds = Lur(t. a0, 0
0
i-th Step] (i-th arc)

A) If qx has an interior arc in [t;_1,t;], there are two
possibilities:

I) If ¢%(t;) = 0, we consider the maximal interval
[ti,ti+1] such that Vt € [ti,ti+1]

Kz/OiLZ(s,qK(s),q}((s))ds—i—
[ Lot 0)ds = Lot aue(8),0)

If this is the case, we set g (t) = qx (¢;), VE € [ti, tit1].

IT) If H(ti,qr (t:), % (t;)) = Pui(t;), we consider the
maximal interval [t;,t;+1] such that V¢ € [t;, t;41]

Kséﬁu&%@gum@+

+ / L (5, 0(s),w/())ds — Lus (£, w(t), o (£))

ti
w(t) being a solution of the differential equation
H(t,w(t),w'(t) = Pu(t) with w(t;) = qx (t;)
If this is the case, we set qx (t) = w(t), Vt € [t;, ti1].

B) If [t;—1,t;] is the boundary interval, we consider
the maximal interval [t;,t;11] such that V¢ € [t;,¢;11]

K= /0 L (5, qx (), i (5))ds+

[ Lals.(a), o ()ds = Lo (60, (0) - (4)

https://doi.org/10.24084/repqj01.352

w(t) being an interior arc of the extremal, with w(t;) =
qr (t;), which satisfies Euler’s equation in its maxi-
mal domain [t;,¢;41] and therefore satisfies the coor-
dination equation (4). Now, we set qx(t) = w(t),
Vit € [tiatz’+1]-

From the computational point of view, the construc-
tion of qx can be performed with the same proce-
dure as in the shooting method, with the use of a
discretized version of equation (1). The exception is
that at the instant when the values obtained for z and
z' do not obey the restrictions, we force the solution
qx to belong to the boundary until the moment when
the conditions of leaving the domain (established in
the main coordination theorem) are fulfilled.

5. A Numerical Example

A program was elaborated using the Mathematica
package which resolves the optimization problem and
was then applied to a hydrothermal system made up
of the thermal equivalent and a hydraulic plant.

For the fuel cost model of the equivalent thermal
plant, we use the quadratic model

U(P(t)) = a+ BP(t) +~P(t)?

The units for the coefficients are: « in (€/h);( in
(€/h.Mw);v in (€/h.MW?).

The hydro-plant’s active power generation is given by
P(t) = —A(t)2'(t) — B2 (t)2(t) — CZ'(t)*
where the coefficients A, B and C are

-1 . B Br

A(t) = —By(So+1t- B==- C==27

( ) G y( 0 + Z>7 G ’ G
We consider that the transmission losses for the hydro-
plant are expressed by Kirchmayer’s model, with the

following loss equation: b; - (P, (t))?. So,
H(t) = Pa(t) = b - (Pa(t))?

The units for the coefficients of the hydro-plant are:
the efficiency G in (m*/h.Mw), the restriction on the
volume b in (m3), the loss coefficient b; in (1/Mw),
the natural inflow i in (m3/h), the initial volume Sy
in (m?), the coefficients By in (m~2.h) and the coef-
ficients B, in (m~2) (parameters that depend on the
geometry of the tanks).

The data for the thermal and hydraulic plants are
summarized in Table I.

TABLE I.- Coefficients

B v G i
0| 4 | 0.001 | 526315 | 10190000

So Br B, by
200-10° | 581.740-1071° | 149.5-1072 | 0.0002
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The values of the power demand (in Mw) were ad-
justed to the following curve

4rt

At
op) — 3124 — t)2cos| i

Pd(t) = 1003 + 6 Sen[ ﬁ]

Firstly, an optimization interval of 24 h. was consid-
ered, and a final volume b = 30 - 105 m3.

Fig. 2 presents the plots of power demand (P;), ther-
mal power (P) and effective hydraulic power (H). We
can see that from 9 h. until 15 h., corresponding to
the hours of the lowest demand in power (i.e. with the
most pronounced trough), the hydraulic plant stops
functioning and the thermal plant assumes all the
power demand. This is done to reserve water for when
power demands are very high, which corresponds to
the peaks that can be seen in the figure. In this case,
the cost is 120848 €.

P4 —— P
Fig. 2. Optimal solution with b = 30 - 10%m3

P (Mw)

1500

1250

1000
750
50007,
250

4 8 12 16 20 24

Pd —— P

Fig. 3. Optimal solution with b = 300 - 10°m?

However, if we take a larger final volume, b = 300-10°
m?, the solution is that depicted in Fig. 3. Here
we see that as there is sufficient water, the hydraulic
plant does not stop functioning at any time whatso-
ever, though the thermal plant shuts off in the most
pronounced trough, i.e. from 11 h. wuntil 13 h. In
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this case, the fuel cost is 51265.50 €, which logically
is considerably lower.

6. Conclusions

This paper falls within the scope of studies concerning
the optimization of the functioning of systems with re-
newable energy (hydro energy).

From the Engineering perspective, one of the main
contributions of this paper is that it resolves the op-
timization of hydrothermal systems without being re-
stricted to particular cases. That is to say, the studied
carried out is independent of of the models used both
for thermal and for hydraulic power plants, in con-
trast to the majority of studies in this field, which use
concrete models. What is more, we have obtained a
very simple method that enables us to find an optimal
solution in the presence of inequality constraints, and
which requires very little computational effort.

From the mathematical point of view, we have also
obtained notable results. When constraints are not
considered, the determination of the extremals of a
functional is a very simple problem and its solution
simply consists in solving the Euler-Lagrange equation
of the functional with boundary conditions, for which
the shooting method can be employed. However, the
problem that we have resolved in this paper is more
complicated, due to non-holonomic constraints.

The main contribution of this paper is the character-
ization of the extremals in variational problems with
non-holonomic constraints. Said characterization, set
out in Theorem 3, permits the solution to be con-
structed by means of a method inspired by the shoot-
ing method that is much simpler than those employed
until now for resolving this type of problem.

As far as future perspectives are concerned, it would
be most interesting to apply this method when the
system is made up of n hydraulic power plants.
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