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Abstract. Instantaneous power theory has a central role
in power systems analysis. Among mathematical settings
used for the development of this theory, quaternion algebra
has been used for describing electrical variables in recent
works. In this context, this paper aims to describe three-phase
power in a quaternion framework. We analyze quaternion
power for balanced and unbalanced delta loads, comparing
the expressions obtained to the usual expressions of complex
power. The quaternion power expression obtained also makes
it natural to introduce a decomposition of the unbalanced
load in terms of a balanced component and an unbalanced
load with null average power. It is also shown that delta
unbalanced loads are equivalent to time-varying balanced
loads. The results obtained extend the power systems theory
in the quaternion domain and emphasize the advantages of
using this framework.
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1. Introduction

For analysis of power systems under unbalanced conditions,
there are several approaches for the characterization of
electrical voltage, current, and power [1]–[11]. These
characterizations can be classified into two different domains:
the time-domain and the frequency domain.

Particularly, the time-domain characterization has been
utilized to develop powerful analysis tools [1]–[11]. In [1],

the instantaneous p-q power theory is proposed employing the
Clark transformation of instantaneous voltages and currents
of a three-phase system. This theory allows the compensation
of reactive power without energy storage components. The
theory was extended by [2]. The author presented another
interpretation that allows instantaneous reactive power
characterization without the need of performing a Clark
transformation. It makes possible analysis of polyphase
networks. In [3], a generalized theory of instantaneous
reactive power is proposed and analyzed for its physical
meaning.

All the above mentioned authors considered instantaneous
space vectors to represent voltages and currents. More
recently, some researchers have investigated instantaneous
power quantities using a more general mathematical setting
such as geometric algebra, tensor analysis, and quaternion
algebra [4]–[11].

A framework based on quaternions seems to be promising
for analysis of several problems in power systems and has
already produced some interesting results [8]–[11]. In [8],
the electromagnetic transients in a three-phase squirrel-cage
induction motor were analyzed. The authors of [9] analyze
a single-phase RLC circuit. In [10], it is pointed out that
quaternion characterization of three-phase quantities serves
as a link between the usual time and frequency domains.
More specifically, with quaternions, it is possible to define
three-phase electrical quantities analogously to single-
phase’s with phasors. In [11], quaternions were applied for
instantaneous compensation of distorting effects in an inverter.
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In this paper, we extend the previous work of [10] for
quaternion power analysis, highlighting the relation between
power and load. In [10], the quaternionic power for a load
was described in terms of quaternionic impedance but only
for a balanced load in Y configuration. Here, we study the
quaternionic power for a general (balanced and unbalanced)
load in ∆ configuration.

The rest of this paper is organized as follow. Section 2
presents quaternions definition and properties. In section 3 the
expression of quaternionic power for three-phase balanced and
unbalanced cases in three wire systems is determined. These
expressions are compared to complex power expressions.
Finally, section 4 presents conclusions and suggestions for
future works.

2. Quaternion Definition and Properties

Originally proposed by Hamilton who was trying to write a
rotation of an element in R3, quaternions are a mathematical
group denoted by H. They are referred to as hypercomplex
numbers and can be defined as

A = r + xq1 + yq2 + zq3 (1)

where r, x, y and z are real numbers and q1, q2 and q3

form, along with 1, the orthonormal basis of the hypercomplex
space. This basic quaternion are related according to the
famous expression discovered by Hamilton

q2
1 = q2

2 = q2
3 = q1q2q3 = −1. (2)

A. Scalar and vectorial parts

Analogously to complex numbers real and imaginary parts,
quaternions can be separated into scalar and vectorial parts.
Considering the quaternion presented in (1), its scalar part Ã
and vectorial part

−→
A are, respectively, given by

Ã = r (3)
−→
A = xq1 + yq2 + zq3. (4)

B. Product

In quaternion algebra, product of two quaternions A and B
is non-commutative and defined by

AB = (ÃB̃ −
−→
A ·
−→
B) + (Ã

−→
A + B̃

−→
B +

−→
A ×

−→
B) (5)

where “·” and “×” represents, respectively, the dot product and
the cross product. In particular, if A and B are pure vectorial
quaternions (scalar part equal to zero), then their product can
be simplified to

AB = −
−→
A ·
−→
B +

−→
A ×

−→
B . (6)

C. Conjugate

Analogously to complex numbers, quaternions also have a
conjugate. The conjugate of the quaternion A is the quaternion

A∗ = Ã−
−→
A. (7)

D. Norm

The norm of a quaternion A is its Euclidean distance to the
origin. It is defined as

|A| =
√
r2 + x2 + y2 + z2. (8)

E. Inverse

The inverse of a quaternion A is defined in terms of its
conjugate and norm according to

A−1 =
A∗

|A|2
. (9)

F. Polar form

The polar form of a quaternion A similarly to complex
numbers is defined in terms of its norm and an angle θ. If

−→
d

is the purely vectorial unitary quaternion in the same direction
of
−→
A and θ the angle between

−→
d and the real axis, the polar

form is defined as

A = |A|e
−→
d θ = |A|(cos(θ) +

−→
d sin(θ)). (10)

3. Quaternion power in three-wire systems

For defining the quaternionic power in an ABC three-phase si-
nusoidal system, first we define quaternion voltage and current.
The quaternion balanced voltage can be defined according to
[10] by

V (t) = va(t)q1 + vb(t)q2 + vc(t)q3 (11)

where
va(t) = Vo cos(ωt) (12)

vb(t) = va(t− 2π/3ω) (13)

vc(t) = va(t+ 2π/3ω) (14)

represents instantaneous voltages of each phase, Vo is the
voltage amplitude in V, t is the time in s, and ω is the
electrical frequency in rad/s.

Analogously, the three-phase current quaternion are defined by

I(t) = ia(t)q1 + ib(t)q2 + ic(t)q3 (15)

in which ia(t), ib(t), and ic(t) are line currents flowing
through phases A, B and C, respectively.

The power quaternion is defined in [10] as

S(t) = V (t)I∗(t). (16)

It can also be written as

S(t) = pabc(t)−
−→
Q(t) (17)

where pabc(t) is the instantaneous three-phase active power
and instantaneous reactive power is

−→
Q(t) = qa(t)q1 + qb(t)q2 + qc(t)q3 (18)
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qa(t) = vb(t)ic(t)− vc(t)ib(t) (19)

qb(t) = vc(t)ia(t)− va(t)ic(t) (20)

qc(t) = va(t)ib(t)− vb(t)ia(t). (21)

A. Three-phase balanced loads

Using these definitions, in [10] a three-phase series RLC
balanced circuit is analysed and the power quaternion for the
Y load is obtained.

S(t) = |V (t)|2 Z

|Z|2
(22)

where
Z = R+−→n

(
ωL− 1

ωC

)
(23)

in which −→n = 1/
√

3(q1 + q2 + q3) is a unitary quaternion.

The quaternion impedance in (23) can be rewritten in its polar
for as

Z = |Z|(cos(θ) +−→n sin(θ)) = |Z|e
−→nθ (24)

where cos(θ) is the power factor of the series RLC impedance.
Notice that the angle θ in (24) is equal to the phase of the
phasor representation of RLC impedance and |Z| is equal to
its absolute value.

From now on, we extend the power analysis of [10] and
analyze it for a general balanced or unbalanced ∆ loads
represented by admittances.

First, considering the same load in [10] and using (24) in (22)
we obtain

S(t) = Y |V (t)|2e
−→nθ (25)

where Y = |Z|−1 is the absolute value of the load quaternion
admittance.

Let us consider the Y-∆ transform of this load. In this
case, Y = 3Y∆. Considering (11), quaternion power can be
expressed by

S =
9

2
V 2
o Y∆e

−→nθ. (26)

From (26) it is observed that quaternion power is constant
for balanced voltages and load. It is also noticeable that the
expression is equivalent to the expression obtained for the
complex power of this load, changing the imaginary unit j
for the unitary quaternion −→n .

B. Three-phase unbalanced ∆ load

Considering an RLC load submitted to a sinusoidal voltage
source, Kirchhoff’s voltage law implies that

Vo cos(ωt) = Ri(t) + L
di(t)

dt
+

1

C

∫ t

0

i(τ)dτ. (27)

Applying the derivative in both sides

−ωVo sin(ωt) = R
di(t)

dt
+ L

d2i(t)

dt2
+

1

C
i(t). (28)

Solving the differential equation (28), considering initial con-
ditions that cancel the transient terms, we obtain

i(t) = VoY cos(ωt− θ) (29)

where
Y =

1√
R2 +

(
ωL− 1

ωC

)2 (30)

θ = tan−1

(
1

R

(
ωL− 1

ωC

))
. (31)

In fact, Y e−jθ is the admittance representation of the RLC
load. Note that (29) is valid for any combination of loads.

Now assuming an unbalanced ∆ load with admittances
Yabe

−jθab ,Ybce−jθbc and Ycae−jθca , where Ymne−jθmn is the
phasor representation of the admittance between phases m and
n. Using (29), the phase currents can be written as

iab(t) = Yabvab(t− θab/ω) (32)

ibc(t) = Ybcvbc(t− θbc/ω) (33)

ica(t) = Ycavca(t− θca/ω) (34)

where each phase n to phase m voltage is given by

vmn(t) =
√

3vm

(
t+

π

6ω

)
. (35)

To obtain the three-phase current quaternion, we use the
relations between phase currents and line currents in a ∆ load,
that is, ia = iab− ica, ib = ibc− iab and ic = ica− ibc. Using
(16), we obtain scalar and vectorial part of the quaternion
power for this case. Calculating it’s scalar part

S̃ = pabc(t) = vaia + vbib + vcic. (36)

Writing (36) in terms of phase currents and phase to phase
voltages, we get

S̃ = vabiab + vbcibc + vcaica. (37)

Using (32)–(34) in (37) results in

S̃ = Yabvab(t)vab(t− θab/ω) + Ybcvbc(t)vbc(t− θbc/ω)

+ Ycavca(t)vca(t− θca/ω). (38)

The scalar part of S is then obtained using (12)–(14),
(35) and the trigonometric identity cos(α) cos(α − β) =
1/2 (cos(2α− β) + cos(β)))

S̃ =
3

2
V 2
o

[
Yab cos(θab) + Ybc cos(θbc) + Yca cos(θca)

+ Yab cos
(

2ωt+
π

3
− θab

)
+ Ybc cos(2ωt+ π − θbc)

+Yca cos
(

2ωt− π

3
− θca

)]
. (39)
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Next, we calculate the vectorial part of quaternion power
−→
S

using (18)–(21). Calculating qa(t)

qa(t) = vbica + vciab − (vb + vc)ibc. (40)

Applying (32)–(34) in (40) we get

qa(t) = Ycavb(t)vca(t− θca/ω) + Yabvc(t)vab(t− θab/ω)

− Ybc(vb(t) + vc(t))vbc(t− θbc/ω). (41)

Using (35), the fact that vb + vc = −va and the trigonometric
identity cos(p) cos(q) = 1/2(cos(p+ q) + cos(p− q)), qa(t) is
given by

qa(t) =

√
3

2
V 2
o

[
Yab cos

(
θab +

π

2

)
+ Ybc cos

(
θbc +

π

2

)
+ Yca cos

(
θca +

π

2

)
+ Yab cos

(
2ωt+

5π

6
− θab

)
+Ybc cos

(
2ωt− π

2
− θbc

)
+ Yca cos

(
2ωt+

π

6
− θca

)]
.

(42)

Given that cos(α) = − sin(α− π/2), we obtain

qa(t) = −
√

3

2
V 2
o

[
Yab sin(θab) + Ybc sin(θbc)

+ Yca sin(θca) + Yab sin
(

2ωt+
π

3
− θab

)
+Ybc sin(2ωt+ π − θbc) + Yca sin

(
2ωt− π

3
− θca

)]
.

(43)

Following an analogous procedure we conclude that qa(t) =
qb(t) = qc(t). So the quaternion power S can be written as

S = S̃ −−→n
√

3qa(t). (44)

Comparing (39), (43) and (44), we can rewrite S as a sum of
6 quaternions in polar form as

S =
9

2

Yab
3
V 2
o e
−→nθab +

9

2

Ybc
3
V 2
o e
−→nθbc

+
9

2

Yca
3
V 2
o e
−→nθca +

9

2

Yab
3
V 2
o e
−→nφab(t)

+
9

2

Ybc
3
V 2
o e
−→nφbc(t) +

9

2

Yca
3
V 2
o e
−→nφca(t) (45)

where φab(t) = 2ωt + π
3 − θab, φbc(t) = 2ωt + π − θbc, and

φca(t) = 2ωt− π
3 − θca.

If we calculate the usual complex power for the same load,
we get

S =
9

2

Yab
3
V 2
o e

jθab +
9

2

Ybc
3
V 2
o e

jθbc +
9

2

Yca
3
V 2
o e

jθca . (46)

If the quaternion power is compared to equivalent expression
for the usual complex power, it can be observed that,

analogously to the balanced case, the three first terms of (45)
are equivalent to the complex power, substituting j for −→n .
The three last terms, on the other hand, are unique to the
quaternion power representation and account for instantaneous
power dynamics.

Comparing (26) and (45), it is observed that the quaternion
power of an unbalanced three-phase load is equivalent to the
sum of the power of six different balanced three-phase loads:
three balanced consisting of 1/3 of the admittances between
each phase and three balanced with varying in time phases.

Summing the three constant quaternions, we can rewrite (45)
as

S =
9

2

Ypl
3
V 2
o e
−→nθpl +

9

2

Yab
3
V 2
o e
−→nφab(t)

+
9

2

Ybc
3
V 2
o e
−→nφbc(t) +

9

2

Yca
3
V 2
o e
−→nφca(t) (47)

where

Y 2
pl = Y 2

ab + Y 2
bc + Y 2

ca + 2YabYbc cos (θab − θbc)
+ 2YbcYca cos (θbc − θca) + 2YcaYab cos (θca − θab) (48)

θpl = kplπ

+ tg−1

(
Yabsin(θab) + Ybcsin(θbc) + Ycasin(θca)

Yabcos(θab) + Ybccos(θbc) + Ycacos(θca)

)
(49)

in which kpl = 1 if the denominator is negative and kpl = 0
otherwise.

These values of Ypl and θpl correspond to the association of
the admittances in parallel, that is,

Yple
−jθpl = Yabe

−jθab + Ybce
−jθbc + Ycae

−jθca .

The other terms can be simplified as well, which is equivalent
two associate the three balanced loads with varying in time
phases in parallel. The quaternion power can then be written
as

S =
9

2

Ypl
3
V 2
o e
−→nθpl +

9

2

Yω
3
V 2
o e
−→nφω(t) (50)

where

φω = kωπ

+ tg−1

(
Yabsin(φab) + Ybcsin(φbc) + Ycasin(φca)

Yabcos(φab) + Ybccos(φbc) + Ycacos(φca)

)
(51)

in which kω = 1 if the denominator is negative and kω = 0
otherwise.

Y 2
ω = Y 2

ab + Y 2
bc + Y 2

ca + 2YabYbc cos

(
θab − θbc +

2π

3

)
+ 2YbcYca cos

(
θbc − θca +

2π

3

)
+ 2YcaYab cos

(
θca − θab +

2π

3

)
. (52)
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Notice that, if the three-phase load is balanced, Yω = 0.

The result in (47) can also be interpreted as the quaternionic
power of one balanced three-phase impedance and three un-
balanced loads with admittances between phases A-B, B-C,
and C-A, respectively

Yab
3
e−jθab ,

Yab
3
e−j(

2π/3+θab) and
Yab
3
ej(

2π/3−θab)

for the first three-phase impedance,

Ybc
3
ej(

2π/3−θbc),
Ybc
3
e−jθbc and

Ybc
3
e−j(

2π/3+θbc)

for the second and

Yca
3
e−j(

2π/3+θca),
Yca
3
ej(

2π/3−θca) and
Yca
3
e−jθca

for the third. This can easily be proven calculating quaternion
power for each of these loads. Fig. 1 shows these loads.

Associating these admittances in parallel, we get an three-
phase load with followings admittances

Y ′abe
−jθ′ab =

Yab
3
e−jθab

+
Ybc
3
ej(

2π/3−θbc) +
Yca
3
e−j(

2π/3+θca) (53)

Y ′bce
−jθ′bc =

Yab
3
e−j(

2π/3+θab)

+
Ybc
3
e−jθbc +

Yca
3
ej(

2π
3 −θca) (54)

Y ′cae
−jθ′ca =

Yab
3
ej(

2π/3−θab)

+
Ybc
3
e−j(

2π/3+θbc) +
Yca
3
e−jθca . (55)

It is noticeable that (53)–(55) are not the unique possible repre-
sentation of the unbalanced term of the three-phase impedance.
Another representation would be obtained if we subtracted the
balanced admittance from the original unbalanced three-phase
admittance. For obtaining all equivalent representations of the
unbalanced term, lets consider that the generic unbalanced
load with admittances between phases A-B, B-C, and C-A,
respectively, Me−jθM , Ne−jθN and Oe−jθO . The line current
of this load in parallel with the balanced load should have line
currents equal to line currents of the initial unbalanced load,
which implies

Me−jθM −Oej( 2π
3 −θO) +

√
3

3
Yple

−j(π6 +θpl) =

Yabe
−jθab − Ycaej(

2π
3 −θca) (56)

Ne−j(
2π
3 +θN ) −Me−jθM +

√
3

3
Yple

−j( 5π
6 +θpl) =

Ybce
−j( 2π

3 +θbc) − Yabe−jθab (57)

Oej(
2π
3 −θO) −Ne−j( 2π

3 +θN ) +

√
3

3
Yple

j(π2−θpl) =

Ycae
j( 2π

3 −θca) − Ybce−j(
2π
3 +θbc). (58)

Since (58) is a linear combination of (56) and (57), we can
eliminate this equation. Solving in terms of Me−jθM , we
obtain

Ne−jθN = Mej(
2π
3 −θM ) −

√
3

3
Yabe

j(π2−θab)

+

√
3

3
Ybce

j(π6−θbc) −
√

3

3
Ycae

−j(π6 +θca) (59)

Oe−jθO = Me−j(
2π
3 +θM ) −

√
3

3
Yabe

−j(π2 +θab)

+

√
3

3
Ybce

−j( 5π
6 +θbc) +

√
3

3
Ycae

j(π6−θca). (60)

The admittance Me−jθM can be chosen arbitrarily, which
implies that there are infinite equivalent unbalanced loads
to the admittances shown in (53)–(55). This result was also
obtained by [12], who showed that for a three wire system
with balanced voltages, there are infinite equivalents to an
unbalanced load. Nevertheless, the unbalanced three-phase
load represented by (59) and (60) has also the propriety of
null average three-phase power. This is a consequence of the
expression of quaternion power (50), where the first term
accounts for the average three-phase power of the load.

Returning to (50), we can simplify the expression summing
both quaternions. This sum results in the shortest version of
quaternion power, analogous to the balanced case presented in
(26)

S =
9

2

Yδ(t)

3
V 2
o e
−→nφδ(t) (61)

where

Yδ(t)
2 = Y 2

pl + Y 2
ω + 2YplYω cos (θpl − φω(t)) (62)

φδ(t) = kδπ + tg−1

(
Yplsin(θpl) + Yωsin(φω(t))

Yplcos(θpl) + Yωcos(φω(t))

)
(63)

in which kδ = 1 if the denominator is negative and kδ = 0
otherwise.

Analyzing (61), it is possible to conclude that the three-phase
unbalanced impedance can be represented by a three-phase
balanced load, with modulus and phase varying in time.
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Fig. 1. Equivalent admittances

4. Conclusions

In this paper, power of three-phase balanced and unbalanced
systems was analyzed in a quaternion framework.

The quaternion power is a characterization of the instantaneous
power. It can be written in some equivalent expressions that
bring useful information about the usual power and load
unbalance.

We have shown that the quaternion power can be expressed
with two terms: one that is equivalent to the usual complex
power and other that accounts for the time-variant contribution
of the load imbalance on the power. The second component
of the power can be used as a measure of the load unbalance
level. It is an unbiased measure in the sense that for a balanced
load this second term is zero. This power decomposition also
makes it natural to introduce the idea of decomposition of
the unbalanced load in terms of a balanced component and
an unbalanced load with null average power.

The quaternion power can be expressed as well in a
form which makes clear that any unbalanced load can be
represented as a time-varying balanced load.
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